Loading…

Local Hölder regularity for nonlocal parabolic \(p\)-Laplace equations

We prove local H\"older regularity for a nonlocal parabolic equations of the form \begin{align*} \partial_t u + \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+sp}}\,dy=0, \end{align*} for \(p\in (1,\infty)\) and \(s \in (0,1)\).

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-01
Main Authors: Adimurthi, Karthik, Prasad, Harsh, Tewary, Vivek
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Adimurthi, Karthik
Prasad, Harsh
Tewary, Vivek
description We prove local H\"older regularity for a nonlocal parabolic equations of the form \begin{align*} \partial_t u + \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+sp}}\,dy=0, \end{align*} for \(p\in (1,\infty)\) and \(s \in (0,1)\).
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2667073939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667073939</sourcerecordid><originalsourceid>FETCH-proquest_journals_26670739393</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw98lPTsxR8Di8LScltUihKDW9NCexKLOkUiEtv0ghLz8vByxfkFiUmJSfk5msEKNREKOp65NYkJOYnKqQWliaWJKZn1fMw8CalphTnMoLpbkZlN1cQ5w9dAuK8gtLU4tL4rPyS4vygFLxRmZm5gbmxpZASJwqAEyLPCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667073939</pqid></control><display><type>article</type><title>Local Hölder regularity for nonlocal parabolic \(p\)-Laplace equations</title><source>Publicly Available Content (ProQuest)</source><creator>Adimurthi, Karthik ; Prasad, Harsh ; Tewary, Vivek</creator><creatorcontrib>Adimurthi, Karthik ; Prasad, Harsh ; Tewary, Vivek</creatorcontrib><description>We prove local H\"older regularity for a nonlocal parabolic equations of the form \begin{align*} \partial_t u + \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+sp}}\,dy=0, \end{align*} for \(p\in (1,\infty)\) and \(s \in (0,1)\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Laplace equation ; Mathematical analysis ; Regularity</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2667073939?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Adimurthi, Karthik</creatorcontrib><creatorcontrib>Prasad, Harsh</creatorcontrib><creatorcontrib>Tewary, Vivek</creatorcontrib><title>Local Hölder regularity for nonlocal parabolic \(p\)-Laplace equations</title><title>arXiv.org</title><description>We prove local H\"older regularity for a nonlocal parabolic equations of the form \begin{align*} \partial_t u + \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+sp}}\,dy=0, \end{align*} for \(p\in (1,\infty)\) and \(s \in (0,1)\).</description><subject>Laplace equation</subject><subject>Mathematical analysis</subject><subject>Regularity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw98lPTsxR8Di8LScltUihKDW9NCexKLOkUiEtv0ghLz8vByxfkFiUmJSfk5msEKNREKOp65NYkJOYnKqQWliaWJKZn1fMw8CalphTnMoLpbkZlN1cQ5w9dAuK8gtLU4tL4rPyS4vygFLxRmZm5gbmxpZASJwqAEyLPCo</recordid><startdate>20240104</startdate><enddate>20240104</enddate><creator>Adimurthi, Karthik</creator><creator>Prasad, Harsh</creator><creator>Tewary, Vivek</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240104</creationdate><title>Local Hölder regularity for nonlocal parabolic \(p\)-Laplace equations</title><author>Adimurthi, Karthik ; Prasad, Harsh ; Tewary, Vivek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26670739393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Laplace equation</topic><topic>Mathematical analysis</topic><topic>Regularity</topic><toplevel>online_resources</toplevel><creatorcontrib>Adimurthi, Karthik</creatorcontrib><creatorcontrib>Prasad, Harsh</creatorcontrib><creatorcontrib>Tewary, Vivek</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adimurthi, Karthik</au><au>Prasad, Harsh</au><au>Tewary, Vivek</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Local Hölder regularity for nonlocal parabolic \(p\)-Laplace equations</atitle><jtitle>arXiv.org</jtitle><date>2024-01-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We prove local H\"older regularity for a nonlocal parabolic equations of the form \begin{align*} \partial_t u + \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+sp}}\,dy=0, \end{align*} for \(p\in (1,\infty)\) and \(s \in (0,1)\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2667073939
source Publicly Available Content (ProQuest)
subjects Laplace equation
Mathematical analysis
Regularity
title Local Hölder regularity for nonlocal parabolic \(p\)-Laplace equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Local%20H%C3%B6lder%20regularity%20for%20nonlocal%20parabolic%20%5C(p%5C)-Laplace%20equations&rft.jtitle=arXiv.org&rft.au=Adimurthi,%20Karthik&rft.date=2024-01-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2667073939%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26670739393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667073939&rft_id=info:pmid/&rfr_iscdi=true