Loading…
The arithmetic volume of the moduli space of abelian surfaces
Let \(\mathcal{A}_g\) denote the moduli stack of principally polarized abelian varieties of dimension \(g\). The arithmetic height, or arithmetic volume, of \(\overline{\mathcal{A}}_g\), is defined to be the arithmetic degree of the metrized Hodge bundle \(\overline{\omega}_g\) on \(\overline{\mathc...
Saved in:
Published in: | arXiv.org 2022-05 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let \(\mathcal{A}_g\) denote the moduli stack of principally polarized abelian varieties of dimension \(g\). The arithmetic height, or arithmetic volume, of \(\overline{\mathcal{A}}_g\), is defined to be the arithmetic degree of the metrized Hodge bundle \(\overline{\omega}_g\) on \(\overline{\mathcal{A}}_g\). In 1999, K\"uhn proved a formula for the arithmetic volume of \(\overline{\mathcal{A}}_1\) in terms of special values of the Riemann zeta function. In this article, we generalize his result to the case \(g=2\). |
---|---|
ISSN: | 2331-8422 |