Loading…
Service Caching Strategy based on Edge Computing and Reinforcement Learning
With the rapid development of the Internet of Things in recent years, there has been a dramatic increase in terminal units and new computationally and data-demanding applications. A terminal unit uploads data to the cloud server, which will be transmitted back to the terminal unit after certain oper...
Saved in:
Published in: | International journal of performability engineering 2022-05, Vol.18 (5), p.350 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the rapid development of the Internet of Things in recent years, there has been a dramatic increase in terminal units and new computationally and data-demanding applications. A terminal unit uploads data to the cloud server, which will be transmitted back to the terminal unit after certain operations. However, such a traditional cloud service is troubled by growing latency. Mobile edge computing emerges in such an environment. A short distance between the edge network and end-users mitigates this problem. However, the edge network has finite resources, making it impossible to deliver all service caching requests. To this end, a strategy is required to selectively cache services on the edge cloud. This study simulates the selection of edge services with a multi-armed bandit model and conducts a comparative study to analyze the impact that different algorithms have on performance. |
---|---|
ISSN: | 0973-1318 |
DOI: | 10.23940/ijpe.22.05.p5.350358 |