Loading…
Persistent nonlinear phase-locking and non-monotonic energy dissipation in micromechanical resonators
Many nonlinear systems are described by eigenmodes with amplitude-dependent frequencies, interacting strongly whenever the frequencies become commensurate at internal resonances. Fast energy exchange via the resonances holds the key to rich dynamical behavior, such as time-varying relaxation rates a...
Saved in:
Published in: | arXiv.org 2022-06 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many nonlinear systems are described by eigenmodes with amplitude-dependent frequencies, interacting strongly whenever the frequencies become commensurate at internal resonances. Fast energy exchange via the resonances holds the key to rich dynamical behavior, such as time-varying relaxation rates and signatures of nonergodicity in thermal equilibrium, revealed in the recent experimental and theoretical studies of micro and nanomechanical resonators. However, a universal yet intuitive physical description for these diverse and sometimes contradictory experimental observations remains elusive. Here we experimentally reveal persistent nonlinear phase-locked states occurring at internal resonances and demonstrate that they are essential for understanding the transient dynamics of nonlinear systems with coupled eigenmodes. The measured dynamics of a fully observable micromechanical resonator system are quantitatively described by the lower frequency mode entering, maintaining, and exiting a persistent phase-locked period tripling state generated by the nonlinear driving force exerted by the higher frequency mode. This model describes the observed phase-locked coherence times, the direction and magnitude of the energy exchange, and the resulting non-monotonic mode energy evolution. Depending on the initial relative phase, the system selects distinct relaxation pathways, either entering or bypassing the locked state. The described persistent phase-locking is not limited to particular frequency fractions or types of nonlinearities and may advance nonlinear resonator systems engineering across physical domains, including photonics as well as nanomechanics. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2206.01089 |