Loading…

Regularization-wise double descent: Why it occurs and how to eliminate it

The risk of overparameterized models, in particular deep neural networks, is often double-descent shaped as a function of the model size. Recently, it was shown that the risk as a function of the early-stopping time can also be double-descent shaped, and this behavior can be explained as a super-pos...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-06
Main Authors: Yilmaz, Fatih Furkan, Heckel, Reinhard
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The risk of overparameterized models, in particular deep neural networks, is often double-descent shaped as a function of the model size. Recently, it was shown that the risk as a function of the early-stopping time can also be double-descent shaped, and this behavior can be explained as a super-position of bias-variance tradeoffs. In this paper, we show that the risk of explicit L2-regularized models can exhibit double descent behavior as a function of the regularization strength, both in theory and practice. We find that for linear regression, a double descent shaped risk is caused by a superposition of bias-variance tradeoffs corresponding to different parts of the model and can be mitigated by scaling the regularization strength of each part appropriately. Motivated by this result, we study a two-layer neural network and show that double descent can be eliminated by adjusting the regularization strengths for the first and second layer. Lastly, we study a 5-layer CNN and ResNet-18 trained on CIFAR-10 with label noise, and CIFAR-100 without label noise, and demonstrate that all exhibit double descent behavior as a function of the regularization strength.
ISSN:2331-8422