Loading…

Big data analytics and classification of cardiovascular disease using machine learning

Hundreds of people dying from heart disease almost every day that is how terrific a delayed diagnosis can be. Living in an advanced era full of intelligent systems, the increasing number of deaths can be reduced. This research paper focuses on the development of a cardiovascular disease prediction s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & fuzzy systems 2022-01, Vol.43 (2), p.2025-2033
Main Authors: Narejo, Sanam, Shaikh, Anoud, Memon, Mehak Maqbool, Mahar, Kainat, Aleem, Zonera, Zardari, Bisharat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hundreds of people dying from heart disease almost every day that is how terrific a delayed diagnosis can be. Living in an advanced era full of intelligent systems, the increasing number of deaths can be reduced. This research paper focuses on the development of a cardiovascular disease prediction system particularly a heart disease, by developing machine learning classifiers, for instance, Support Vector Machine (SVM), Decision Tree, and XGBoost Classifiers. We also scaled the features to standardize unconstrained features in data, available in a fixed range for better optimization of models. For efficiency, the classification of features was also done in two categories, Independent features, and dependent features. Furthermore, the performance measures helped with best practices for model assessment & classifier performance. Eventually, after tuning hyper-parameters, the results exhibit high accuracy for XGBoost among other trained classifiers. After a comparative analysis, the best-suited algorithm can be utilized for heart disease detection, in the medical field, and regarding the economy, as costly treatments are taken into consideration. This indicates that a non-expert can also attempt for diagnosis without fretting over expensive treatments.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-219302