Loading…
On Planar Sampling with Gaussian Kernel in Spaces of Bandlimited Functions
Let I = ( a , b ) × ( c , d ) ⊂ R + 2 be an index set and let { G α ( x ) } α ∈ I be a collection of Gaussian functions, i.e. G α ( x ) = exp ( - α 1 x 1 2 - α 2 x 2 2 ) , where α = ( α 1 , α 2 ) ∈ I , x = ( x 1 , x 2 ) ∈ R 2 . We present a complete description of the uniformly discrete sets Λ ⊂ R 2...
Saved in:
Published in: | The Journal of fourier analysis and applications 2022-06, Vol.28 (3), Article 55 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
I
=
(
a
,
b
)
×
(
c
,
d
)
⊂
R
+
2
be an index set and let
{
G
α
(
x
)
}
α
∈
I
be a collection of Gaussian functions, i.e.
G
α
(
x
)
=
exp
(
-
α
1
x
1
2
-
α
2
x
2
2
)
, where
α
=
(
α
1
,
α
2
)
∈
I
,
x
=
(
x
1
,
x
2
)
∈
R
2
. We present a complete description of the uniformly discrete sets
Λ
⊂
R
2
such that every bandlimited signal
f
admits a stable reconstruction from the samples
{
f
∗
G
α
(
λ
)
}
λ
∈
Λ
. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-022-09948-0 |