Loading…
Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV
This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The c...
Saved in:
Published in: | Journal of the Franklin Institute 2022-05, Vol.359 (8), p.3671-3691 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The critic-only network structure is adopted to approximate the optimal cost function. The merit of the proposed algorithm lies in that the event triggering mechanism is incorporated the neural network (NN) to reduce calculations and actions of the multi-UAV system, which is significant for the practical application. What’s more, a new weight update law based on the gradient descent technology is proposed for the critic NN, which can ensure that the solution converges to the optimal value online. Then, a finite-time attitude tracking controller is adopted for the attitude loop to achieve rapid attitude tracking. Finally, the efficiency of the proposed method is illustrated by numerical simulations and experimental verification. |
---|---|
ISSN: | 0016-0032 1879-2693 0016-0032 |
DOI: | 10.1016/j.jfranklin.2022.02.034 |