Loading…
Robust graph learning with graph convolutional network
Graph convolutional network (GCN) is a powerful tool to process the graph data and has achieved satisfactory performance in the task of node classification. In general, GCN uses a fixed graph to guide the graph convolutional operation. However, the fixed graph from the original feature space may con...
Saved in:
Published in: | Information processing & management 2022-05, Vol.59 (3), p.102916, Article 102916 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graph convolutional network (GCN) is a powerful tool to process the graph data and has achieved satisfactory performance in the task of node classification. In general, GCN uses a fixed graph to guide the graph convolutional operation. However, the fixed graph from the original feature space may contain noises or outliers, which may degrade the effectiveness of GCN. To address this issue, in this paper, we propose a robust graph learning convolutional network (RGLCN). Specifically, we design a robust graph learning model based on the sparse constraint and strong connectivity constraint to achieve the smoothness of the graph learning. In addition, we introduce graph learning model into GCN to explore the representative information, aiming to learning a high-quality graph for the downstream task. Experiments on citation network datasets show that the proposed RGLCN outperforms the existing comparison methods with respect to the task of node classification. |
---|---|
ISSN: | 0306-4573 1873-5371 |
DOI: | 10.1016/j.ipm.2022.102916 |