Loading…
On the Best Approximation Algorithm by Low-Rank Matrices in Chebyshev’s Norm
The problem of approximation by low-rank matrices is found everywhere in computational mathematics. Traditionally, this problem is solved in the spectral or Frobenius norm, where the approximation efficiency is associated with the rate of decrease of the matrix singular values. However, recent resul...
Saved in:
Published in: | Computational mathematics and mathematical physics 2022, Vol.62 (5), p.701-718 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem of approximation by low-rank matrices is found everywhere in computational mathematics. Traditionally, this problem is solved in the spectral or Frobenius norm, where the approximation efficiency is associated with the rate of decrease of the matrix singular values. However, recent results show that this requirement is not necessary in other norms. In this paper, a method for solving the problem of approximating by low-rank matrices in Chebyshev’s norm is proposed. It makes it possible to construct effective approximations of matrices for which singular values do not decrease in an acceptable amount time. |
---|---|
ISSN: | 0965-5425 1555-6662 |
DOI: | 10.1134/S0965542522050141 |