Loading…

Design Methodology of Bidirectional Resonant CLLC Charger for Wide Voltage Range Based on Parameter Equivalent and Time Domain Model

The bidirectional CLLC resonant converter has distinguished potential in battery chargers and energy storage systems for its advantages in soft switching and bidirectional power flow capability. However, traditional CLLC converters generally adopt symmetrical design to maintain bidirectional symmetr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2022-10, Vol.37 (10), p.12041-12064
Main Authors: Zhao, Lie, Pei, Yunqing, Wang, Laili, Pei, Long, Cao, Wei, Gan, Yongmei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c223t-b2bc3b838c0b422dce2be1648702bb29a589d9ed229e311e102c63eaef61d6bb3
cites cdi_FETCH-LOGICAL-c223t-b2bc3b838c0b422dce2be1648702bb29a589d9ed229e311e102c63eaef61d6bb3
container_end_page 12064
container_issue 10
container_start_page 12041
container_title IEEE transactions on power electronics
container_volume 37
creator Zhao, Lie
Pei, Yunqing
Wang, Laili
Pei, Long
Cao, Wei
Gan, Yongmei
description The bidirectional CLLC resonant converter has distinguished potential in battery chargers and energy storage systems for its advantages in soft switching and bidirectional power flow capability. However, traditional CLLC converters generally adopt symmetrical design to maintain bidirectional symmetrical characteristics, which means the secondary LC network is designed to be equal to the primary LC network after reflection. The symmetrical design is only suitable for voltage grade matching scenarios where a wide voltage range is not required, such as CLLC-type dc transformers. Whereas in the field of bidirectional chargers, due to the wide voltage range of battery, there are significant differences in the characteristics required between charging and discharging mode, which makes symmetrical design no longer applicable. To cope with this issue, this paper proposes a novel design methodology of CLLC based on parameter equivalent and time domain model. With the parameter equivalent principle, the CLLC resonant tank with arbitrary parameters is investigated to satisfy the requirements of wide voltage range for bidirectional charger application. Compared with the symmetrical design, the proposed method can meet the requirements of bidirectional gain within preset frequency range and guarantee the achievement of zero-voltage switching under required load conditions with the minimum reactive power. In addition, the area product capacity of the magnetic part of the CLLC resonant tank is minimized based on the parameter equivalent principle. Finally, experiments have been performed on a 1 kW prototype to confirm the validity and feasibility of the proposed design methodology.
doi_str_mv 10.1109/TPEL.2022.3170101
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2679397717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9763381</ieee_id><sourcerecordid>2679397717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-b2bc3b838c0b422dce2be1648702bb29a589d9ed229e311e102c63eaef61d6bb3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4pXrtN4iOE8iMFUVUFjpEdb1qjNAY7ReqdB8dVKy47e5iZ1X6EXAIbATB5s5hNyxFnnI8EZAwYHJEByDEkcc-OyYDl-STJpRSn5CyET8ZgPGEwIL_3GOyyoy_Yr5xxrVtuqWvonTXWY91b16mWzjFE7XpalGVBi5XyS_S0cZ5-WIP03bW9WiKdqy7OOxXQUNfRmfJqjX10Tr839ke1GBtUZ-jCrpHeu7Wy8a4z2J6Tk0a1AS8OOiRvD9NF8ZSUr4_PxW2Z1JyLPtFc10LnIq-ZHnNuauQaIR3nGeNac6kmuTQSDecSBQAC43UqUGGTgkm1FkNyve_98u57g6GvPt3Gxw9DxdNMCpllkEUX7F21dyF4bKovb9fKbytg1Q52tYNd7WBXB9gxc7XPWET898ssFSIH8Qcg73uZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679397717</pqid></control><display><type>article</type><title>Design Methodology of Bidirectional Resonant CLLC Charger for Wide Voltage Range Based on Parameter Equivalent and Time Domain Model</title><source>IEEE Xplore (Online service)</source><creator>Zhao, Lie ; Pei, Yunqing ; Wang, Laili ; Pei, Long ; Cao, Wei ; Gan, Yongmei</creator><creatorcontrib>Zhao, Lie ; Pei, Yunqing ; Wang, Laili ; Pei, Long ; Cao, Wei ; Gan, Yongmei</creatorcontrib><description>The bidirectional CLLC resonant converter has distinguished potential in battery chargers and energy storage systems for its advantages in soft switching and bidirectional power flow capability. However, traditional CLLC converters generally adopt symmetrical design to maintain bidirectional symmetrical characteristics, which means the secondary LC network is designed to be equal to the primary LC network after reflection. The symmetrical design is only suitable for voltage grade matching scenarios where a wide voltage range is not required, such as CLLC-type dc transformers. Whereas in the field of bidirectional chargers, due to the wide voltage range of battery, there are significant differences in the characteristics required between charging and discharging mode, which makes symmetrical design no longer applicable. To cope with this issue, this paper proposes a novel design methodology of CLLC based on parameter equivalent and time domain model. With the parameter equivalent principle, the CLLC resonant tank with arbitrary parameters is investigated to satisfy the requirements of wide voltage range for bidirectional charger application. Compared with the symmetrical design, the proposed method can meet the requirements of bidirectional gain within preset frequency range and guarantee the achievement of zero-voltage switching under required load conditions with the minimum reactive power. In addition, the area product capacity of the magnetic part of the CLLC resonant tank is minimized based on the parameter equivalent principle. Finally, experiments have been performed on a 1 kW prototype to confirm the validity and feasibility of the proposed design methodology.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3170101</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Battery chargers ; Charging ; CLLC resonant converter ; Converters ; Design engineering ; Design methodology ; Electric potential ; Energy storage ; Equivalence ; Frequency ranges ; Magnetic resonance ; Mathematical models ; parameter equivalent ; Parameters ; Power flow ; Principles ; Reactive power ; Storage systems ; Switching ; Time division multiplexing ; Time domain analysis ; time domain model ; Voltage ; Voltage control ; wide voltage range ; Zero voltage switching ; zero-voltage switching (ZVS)</subject><ispartof>IEEE transactions on power electronics, 2022-10, Vol.37 (10), p.12041-12064</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-b2bc3b838c0b422dce2be1648702bb29a589d9ed229e311e102c63eaef61d6bb3</citedby><cites>FETCH-LOGICAL-c223t-b2bc3b838c0b422dce2be1648702bb29a589d9ed229e311e102c63eaef61d6bb3</cites><orcidid>0000-0002-9938-5590 ; 0000-0003-2424-1936 ; 0000-0003-1277-0208 ; 0000-0002-7023-6647 ; 0000-0003-0156-5719 ; 0000-0003-1745-5979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9763381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhao, Lie</creatorcontrib><creatorcontrib>Pei, Yunqing</creatorcontrib><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Pei, Long</creatorcontrib><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Gan, Yongmei</creatorcontrib><title>Design Methodology of Bidirectional Resonant CLLC Charger for Wide Voltage Range Based on Parameter Equivalent and Time Domain Model</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>The bidirectional CLLC resonant converter has distinguished potential in battery chargers and energy storage systems for its advantages in soft switching and bidirectional power flow capability. However, traditional CLLC converters generally adopt symmetrical design to maintain bidirectional symmetrical characteristics, which means the secondary LC network is designed to be equal to the primary LC network after reflection. The symmetrical design is only suitable for voltage grade matching scenarios where a wide voltage range is not required, such as CLLC-type dc transformers. Whereas in the field of bidirectional chargers, due to the wide voltage range of battery, there are significant differences in the characteristics required between charging and discharging mode, which makes symmetrical design no longer applicable. To cope with this issue, this paper proposes a novel design methodology of CLLC based on parameter equivalent and time domain model. With the parameter equivalent principle, the CLLC resonant tank with arbitrary parameters is investigated to satisfy the requirements of wide voltage range for bidirectional charger application. Compared with the symmetrical design, the proposed method can meet the requirements of bidirectional gain within preset frequency range and guarantee the achievement of zero-voltage switching under required load conditions with the minimum reactive power. In addition, the area product capacity of the magnetic part of the CLLC resonant tank is minimized based on the parameter equivalent principle. Finally, experiments have been performed on a 1 kW prototype to confirm the validity and feasibility of the proposed design methodology.</description><subject>Batteries</subject><subject>Battery chargers</subject><subject>Charging</subject><subject>CLLC resonant converter</subject><subject>Converters</subject><subject>Design engineering</subject><subject>Design methodology</subject><subject>Electric potential</subject><subject>Energy storage</subject><subject>Equivalence</subject><subject>Frequency ranges</subject><subject>Magnetic resonance</subject><subject>Mathematical models</subject><subject>parameter equivalent</subject><subject>Parameters</subject><subject>Power flow</subject><subject>Principles</subject><subject>Reactive power</subject><subject>Storage systems</subject><subject>Switching</subject><subject>Time division multiplexing</subject><subject>Time domain analysis</subject><subject>time domain model</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>wide voltage range</subject><subject>Zero voltage switching</subject><subject>zero-voltage switching (ZVS)</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4pXrtN4iOE8iMFUVUFjpEdb1qjNAY7ReqdB8dVKy47e5iZ1X6EXAIbATB5s5hNyxFnnI8EZAwYHJEByDEkcc-OyYDl-STJpRSn5CyET8ZgPGEwIL_3GOyyoy_Yr5xxrVtuqWvonTXWY91b16mWzjFE7XpalGVBi5XyS_S0cZ5-WIP03bW9WiKdqy7OOxXQUNfRmfJqjX10Tr839ke1GBtUZ-jCrpHeu7Wy8a4z2J6Tk0a1AS8OOiRvD9NF8ZSUr4_PxW2Z1JyLPtFc10LnIq-ZHnNuauQaIR3nGeNac6kmuTQSDecSBQAC43UqUGGTgkm1FkNyve_98u57g6GvPt3Gxw9DxdNMCpllkEUX7F21dyF4bKovb9fKbytg1Q52tYNd7WBXB9gxc7XPWET898ssFSIH8Qcg73uZ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhao, Lie</creator><creator>Pei, Yunqing</creator><creator>Wang, Laili</creator><creator>Pei, Long</creator><creator>Cao, Wei</creator><creator>Gan, Yongmei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid><orcidid>https://orcid.org/0000-0003-2424-1936</orcidid><orcidid>https://orcid.org/0000-0003-1277-0208</orcidid><orcidid>https://orcid.org/0000-0002-7023-6647</orcidid><orcidid>https://orcid.org/0000-0003-0156-5719</orcidid><orcidid>https://orcid.org/0000-0003-1745-5979</orcidid></search><sort><creationdate>20221001</creationdate><title>Design Methodology of Bidirectional Resonant CLLC Charger for Wide Voltage Range Based on Parameter Equivalent and Time Domain Model</title><author>Zhao, Lie ; Pei, Yunqing ; Wang, Laili ; Pei, Long ; Cao, Wei ; Gan, Yongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-b2bc3b838c0b422dce2be1648702bb29a589d9ed229e311e102c63eaef61d6bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Battery chargers</topic><topic>Charging</topic><topic>CLLC resonant converter</topic><topic>Converters</topic><topic>Design engineering</topic><topic>Design methodology</topic><topic>Electric potential</topic><topic>Energy storage</topic><topic>Equivalence</topic><topic>Frequency ranges</topic><topic>Magnetic resonance</topic><topic>Mathematical models</topic><topic>parameter equivalent</topic><topic>Parameters</topic><topic>Power flow</topic><topic>Principles</topic><topic>Reactive power</topic><topic>Storage systems</topic><topic>Switching</topic><topic>Time division multiplexing</topic><topic>Time domain analysis</topic><topic>time domain model</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>wide voltage range</topic><topic>Zero voltage switching</topic><topic>zero-voltage switching (ZVS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lie</creatorcontrib><creatorcontrib>Pei, Yunqing</creatorcontrib><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Pei, Long</creatorcontrib><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Gan, Yongmei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lie</au><au>Pei, Yunqing</au><au>Wang, Laili</au><au>Pei, Long</au><au>Cao, Wei</au><au>Gan, Yongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Methodology of Bidirectional Resonant CLLC Charger for Wide Voltage Range Based on Parameter Equivalent and Time Domain Model</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>37</volume><issue>10</issue><spage>12041</spage><epage>12064</epage><pages>12041-12064</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>The bidirectional CLLC resonant converter has distinguished potential in battery chargers and energy storage systems for its advantages in soft switching and bidirectional power flow capability. However, traditional CLLC converters generally adopt symmetrical design to maintain bidirectional symmetrical characteristics, which means the secondary LC network is designed to be equal to the primary LC network after reflection. The symmetrical design is only suitable for voltage grade matching scenarios where a wide voltage range is not required, such as CLLC-type dc transformers. Whereas in the field of bidirectional chargers, due to the wide voltage range of battery, there are significant differences in the characteristics required between charging and discharging mode, which makes symmetrical design no longer applicable. To cope with this issue, this paper proposes a novel design methodology of CLLC based on parameter equivalent and time domain model. With the parameter equivalent principle, the CLLC resonant tank with arbitrary parameters is investigated to satisfy the requirements of wide voltage range for bidirectional charger application. Compared with the symmetrical design, the proposed method can meet the requirements of bidirectional gain within preset frequency range and guarantee the achievement of zero-voltage switching under required load conditions with the minimum reactive power. In addition, the area product capacity of the magnetic part of the CLLC resonant tank is minimized based on the parameter equivalent principle. Finally, experiments have been performed on a 1 kW prototype to confirm the validity and feasibility of the proposed design methodology.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3170101</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid><orcidid>https://orcid.org/0000-0003-2424-1936</orcidid><orcidid>https://orcid.org/0000-0003-1277-0208</orcidid><orcidid>https://orcid.org/0000-0002-7023-6647</orcidid><orcidid>https://orcid.org/0000-0003-0156-5719</orcidid><orcidid>https://orcid.org/0000-0003-1745-5979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2022-10, Vol.37 (10), p.12041-12064
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_2679397717
source IEEE Xplore (Online service)
subjects Batteries
Battery chargers
Charging
CLLC resonant converter
Converters
Design engineering
Design methodology
Electric potential
Energy storage
Equivalence
Frequency ranges
Magnetic resonance
Mathematical models
parameter equivalent
Parameters
Power flow
Principles
Reactive power
Storage systems
Switching
Time division multiplexing
Time domain analysis
time domain model
Voltage
Voltage control
wide voltage range
Zero voltage switching
zero-voltage switching (ZVS)
title Design Methodology of Bidirectional Resonant CLLC Charger for Wide Voltage Range Based on Parameter Equivalent and Time Domain Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Methodology%20of%20Bidirectional%20Resonant%20CLLC%20Charger%20for%20Wide%20Voltage%20Range%20Based%20on%20Parameter%20Equivalent%20and%20Time%20Domain%20Model&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Zhao,%20Lie&rft.date=2022-10-01&rft.volume=37&rft.issue=10&rft.spage=12041&rft.epage=12064&rft.pages=12041-12064&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3170101&rft_dat=%3Cproquest_ieee_%3E2679397717%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-b2bc3b838c0b422dce2be1648702bb29a589d9ed229e311e102c63eaef61d6bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679397717&rft_id=info:pmid/&rft_ieee_id=9763381&rfr_iscdi=true