Loading…
Best Approximation-Preserving Operators over Hardy Space
Let \(T_n\) be the linear Hadamard convolution operator acting over Hardy space \(H^q\), \(1\le q\le\infty\). We call \(T_n\) a best approximation-preserving operator (BAP operator) if \(T_n(e_n)=e_n\), where \(e_n(z):=z^n,\) and if \(\|T_n(f)\|_q\le E_n(f)_q\) for all \(f\in H^q\), where \(E_n(f)_q...
Saved in:
Published in: | arXiv.org 2022-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let \(T_n\) be the linear Hadamard convolution operator acting over Hardy space \(H^q\), \(1\le q\le\infty\). We call \(T_n\) a best approximation-preserving operator (BAP operator) if \(T_n(e_n)=e_n\), where \(e_n(z):=z^n,\) and if \(\|T_n(f)\|_q\le E_n(f)_q\) for all \(f\in H^q\), where \(E_n(f)_q\) is the best approximation by algebraic polynomials of degree a most \(n-1\) in \(H^q\) space. We give necessary and sufficient conditions for \(T_n\) to be a BAP operator over \(H^\infty\). We apply this result to establish an exact lower bound for the best approximation of bounded holomorphic functions. In particular, we show that the Landau-type inequality \(\left|\widehat f_n\right|+c\left|\widehat f_N\right|\le E_n(f)_\infty\), where \(c>0\) and \(n |
---|---|
ISSN: | 2331-8422 |