Loading…
Counting maximal abelian subgroups of p-groups
We show that the number of maximal abelian subgroups of a finite p -group is congruent to 1 modulo p . Furthermore, if p > 2 , the same can be said for the maximal elementary abelian subgroups, and more generally, for the maximal abelian subgroups of any given p -power exponent.
Saved in:
Published in: | Archiv der Mathematik 2022-07, Vol.119 (1), p.1-9 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that the number of maximal abelian subgroups of a finite
p
-group is congruent to 1 modulo
p
. Furthermore, if
p
>
2
, the same can be said for the maximal elementary abelian subgroups, and more generally, for the maximal abelian subgroups of any given
p
-power exponent. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-022-01739-9 |