Loading…

Monitoring Time-Non-Stable Surfaces Using Mobile NIR DLP Spectroscopy

In recent years, Near Infrared (NIR) spectroscopy has increased in popularity and usage for different purposes, including the detection of particular substances, evaluation of food quality, etc. Usually, mobile handheld NIR spectroscopy devices are used on the surfaces of different materials, very o...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2022-07, Vol.11 (13), p.1945
Main Authors: GÄ…siorowski, Marek, Szymak, Piotr, Patryn, Aleksy, Naus, Krzysztof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, Near Infrared (NIR) spectroscopy has increased in popularity and usage for different purposes, including the detection of particular substances, evaluation of food quality, etc. Usually, mobile handheld NIR spectroscopy devices are used on the surfaces of different materials, very often organic ones. The features of these materials change as they age, leading to changes in their spectra. The ageing process often occurs only slowly, i.e., corresponding reflection spectra can be analyzed each hour or at an even longer interval. This paper undertakes the problem of analyzing surfaces of non-stable, rapidly changing materials such as waxes or adhesive materials. To obtain their characteristic spectra, NIR spectroscopy using a Digital Light Projection (DLP) spectrometer was used. Based on earlier experiences and the current state of the art, Artificial Neural Networks (ANNs) were used to process spectral sequences to proceed with an enormous value of spectra gathered during measurements.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11131945