Loading…

S-RAP: relevance-aware QoS prediction in web-services and user contexts

With quick advancement in web technology, web-services offered on internet are growing quickly, making it challenging for users to choose a web-service fit to their needs. Recommender systems save users the hassle of going through a range of products by product recommendations through analytical tec...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge and information systems 2022-07, Vol.64 (7), p.1997-2022
Main Authors: Muslim, Hafiz Syed Muhammad, Rubab, Saddaf, Khan, Malik M., Iltaf, Naima, Bashir, Ali Kashif, Javed, Kashif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With quick advancement in web technology, web-services offered on internet are growing quickly, making it challenging for users to choose a web-service fit to their needs. Recommender systems save users the hassle of going through a range of products by product recommendations through analytical techniques on historical data of user experiences of the available items/products. Research efforts provide several methods for web-service recommendation in which QoS-related attributes play primary role such as response-time, throughput, security, privacy and web-service-delivery. Derivable attributes including, user-trustworthiness and web-services reputation in contexts of users and web-services can also affect the QoS prediction. The proposed research focuses on a web-service recommendation model, S-RAP, for QoS prediction based on derivable attributes to predict QoS of a web-service that a user who has not invoked it before would experience. Services-Relevance attribute is proposed in this publication, which emphasizes on employing the historical data and extracting the degree of relevance in the users and web-services context to predict the QoS values for a user. The proposed system produces satisfactorily accurate rating predictions in the experiments evaluated by the Mean Absolute Error and Normalized Mean Absolute Error metrics. The results compared with state-of-the-art models show a relative improvement by 4.0%.
ISSN:0219-1377
0219-3116
DOI:10.1007/s10115-022-01699-0