Loading…
Non‐classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia
The Coorong Lakes, South Australia, are one of the models for unravelling the ‘Dolomite Problem’. Critically, today only a few modern environments remain where large quantities of very high magnesium calcite (VHMC; Ca0.5Mg0.5CO3; also described as protodolomite or disordered dolomite) and magnesite...
Saved in:
Published in: | Sedimentology 2022-08, Vol.69 (5), p.2246-2266 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Coorong Lakes, South Australia, are one of the models for unravelling the ‘Dolomite Problem’. Critically, today only a few modern environments remain where large quantities of very high magnesium calcite (VHMC; Ca0.5Mg0.5CO3; also described as protodolomite or disordered dolomite) and magnesite (MgCO3) precipitate. Previously conducted laboratory studies demonstrate that carbonate minerals can precipitate via classical and non‐classical crystallization pathways. This study uses the preserved crystal sizes, morphologies and microstructures of Ca–Mg carbonates in the Coorong Lakes (Milne Lake, Pellet Lake and North Stromatolite Lake) to evaluate which crystallization pathway most likely occurred. In the fine‐grained sediments of these lakes, very high magnesium calcite and magnesite occur as aggregate particles of nanocrystals ( |
---|---|
ISSN: | 0037-0746 1365-3091 |
DOI: | 10.1111/sed.12991 |