Loading…

Non‐classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia

The Coorong Lakes, South Australia, are one of the models for unravelling the ‘Dolomite Problem’. Critically, today only a few modern environments remain where large quantities of very high magnesium calcite (VHMC; Ca0.5Mg0.5CO3; also described as protodolomite or disordered dolomite) and magnesite...

Full description

Saved in:
Bibliographic Details
Published in:Sedimentology 2022-08, Vol.69 (5), p.2246-2266
Main Authors: Raudsepp, Maija J., Wilson, Sasha, Morgan, Bree, Patel, Avni, Johnston, Scott G., Gagen, Emma J., Fallon, Stewart J., Tosca, Nicholas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13
cites cdi_FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13
container_end_page 2266
container_issue 5
container_start_page 2246
container_title Sedimentology
container_volume 69
creator Raudsepp, Maija J.
Wilson, Sasha
Morgan, Bree
Patel, Avni
Johnston, Scott G.
Gagen, Emma J.
Fallon, Stewart J.
Tosca, Nicholas
description The Coorong Lakes, South Australia, are one of the models for unravelling the ‘Dolomite Problem’. Critically, today only a few modern environments remain where large quantities of very high magnesium calcite (VHMC; Ca0.5Mg0.5CO3; also described as protodolomite or disordered dolomite) and magnesite (MgCO3) precipitate. Previously conducted laboratory studies demonstrate that carbonate minerals can precipitate via classical and non‐classical crystallization pathways. This study uses the preserved crystal sizes, morphologies and microstructures of Ca–Mg carbonates in the Coorong Lakes (Milne Lake, Pellet Lake and North Stromatolite Lake) to evaluate which crystallization pathway most likely occurred. In the fine‐grained sediments of these lakes, very high magnesium calcite and magnesite occur as aggregate particles of nanocrystals (
doi_str_mv 10.1111/sed.12991
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2691614822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691614822</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpDLyBJSYk0tpx4sQjKuVDqmAAZuvqOK2LGxc7AYWJR-AZeRIMhREvJ59-dyf9ETqmZETjGwddjWgqBN1BA8p4njAi6C4aEMKKhBQZ30cHIawIoTwrxQDZW9d8vn8oCyEYBRYr34cWrDVv0BrXYFfjF-17vDSLJV7DotHBdGscqTKtxtBUf934Mw1ulxpPnPOuWeAZPOlwhs-70HqwBg7RXg026KPfOkSPl9OHyXUyu7u6mZzPEmC0pImAOmO5YJWGSlFN6wIEqRkBXmRM1FASVVdEURWFSsU8U5xXOYgyV3PIFWVDdLLdu_HuudOhlSvX-SaelCkXlNOsTNOoTrdKeReC17XceLMG30tK5HeYMoYpf8KMdry1r8bq_n8o76cX24kvF0d41A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691614822</pqid></control><display><type>article</type><title>Non‐classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Raudsepp, Maija J. ; Wilson, Sasha ; Morgan, Bree ; Patel, Avni ; Johnston, Scott G. ; Gagen, Emma J. ; Fallon, Stewart J. ; Tosca, Nicholas</creator><contributor>Tosca, Nicholas</contributor><creatorcontrib>Raudsepp, Maija J. ; Wilson, Sasha ; Morgan, Bree ; Patel, Avni ; Johnston, Scott G. ; Gagen, Emma J. ; Fallon, Stewart J. ; Tosca, Nicholas ; Tosca, Nicholas</creatorcontrib><description>The Coorong Lakes, South Australia, are one of the models for unravelling the ‘Dolomite Problem’. Critically, today only a few modern environments remain where large quantities of very high magnesium calcite (VHMC; Ca0.5Mg0.5CO3; also described as protodolomite or disordered dolomite) and magnesite (MgCO3) precipitate. Previously conducted laboratory studies demonstrate that carbonate minerals can precipitate via classical and non‐classical crystallization pathways. This study uses the preserved crystal sizes, morphologies and microstructures of Ca–Mg carbonates in the Coorong Lakes (Milne Lake, Pellet Lake and North Stromatolite Lake) to evaluate which crystallization pathway most likely occurred. In the fine‐grained sediments of these lakes, very high magnesium calcite and magnesite occur as aggregate particles of nanocrystals (&lt;100 nm). Rietveld refinements using X‐ray diffraction data give modelled Lvol–IB crystallite size values of &lt;120 nm for all carbonates. Transmission electron microscopy shows that, within VHMC and magnesite particles, nanocrystals have an almost identical orientation of their crystal lattice fringes. This is morphologically similar to Ca–Mg carbonates formed via an amorphous carbonate precursor in non‐classical crystallization laboratory experiments. Precipitation of carbonate minerals via an amorphous‐to‐crystalline pathway requires the water to be supersaturated relative to both crystalline and amorphous phases. In the Coorong Lakes, surface water likely only becomes supersaturated relative to amorphous carbonate phases in the late summer after extensive evaporation. Observations suggest that VHMC and dolomite do not directly precipitate from bulk modern seawater, despite oversaturation relative to the crystalline phases, because seawater is undersaturated with respect to amorphous calcium magnesium carbonate, thus limiting the precipitation through a non‐classical crystallization pathway.</description><identifier>ISSN: 0037-0746</identifier><identifier>EISSN: 1365-3091</identifier><identifier>DOI: 10.1111/sed.12991</identifier><language>eng</language><publisher>Madrid: Wiley Subscription Services, Inc</publisher><subject>Aragonite ; Calcite ; Calcium ; Calcium carbonate ; Calcium magnesium carbonate ; Carbonate minerals ; Carbonates ; Chemical analysis ; Chemical precipitation ; Crystal lattices ; Crystal structure ; Crystallinity ; Crystallites ; Crystallization ; Crystals ; Dolomite ; Dolostone ; Electron microscopy ; Evaporation ; Laboratories ; Laboratory experimentation ; lacustrine carbonates ; Lakes ; Magnesite ; Magnesium ; Magnesium carbonate ; Minerals ; Morphology ; Nanocrystals ; non‐classical crystallization ; Phases ; Precipitation ; Seawater ; Sediments ; Stromatolites ; Surface water ; Transmission electron microscopy ; very high magnesium calcite ; Water analysis</subject><ispartof>Sedimentology, 2022-08, Vol.69 (5), p.2246-2266</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd on behalf of International Association of Sedimentologists</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13</citedby><cites>FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13</cites><orcidid>0000-0003-3189-2972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Tosca, Nicholas</contributor><creatorcontrib>Raudsepp, Maija J.</creatorcontrib><creatorcontrib>Wilson, Sasha</creatorcontrib><creatorcontrib>Morgan, Bree</creatorcontrib><creatorcontrib>Patel, Avni</creatorcontrib><creatorcontrib>Johnston, Scott G.</creatorcontrib><creatorcontrib>Gagen, Emma J.</creatorcontrib><creatorcontrib>Fallon, Stewart J.</creatorcontrib><creatorcontrib>Tosca, Nicholas</creatorcontrib><title>Non‐classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia</title><title>Sedimentology</title><description>The Coorong Lakes, South Australia, are one of the models for unravelling the ‘Dolomite Problem’. Critically, today only a few modern environments remain where large quantities of very high magnesium calcite (VHMC; Ca0.5Mg0.5CO3; also described as protodolomite or disordered dolomite) and magnesite (MgCO3) precipitate. Previously conducted laboratory studies demonstrate that carbonate minerals can precipitate via classical and non‐classical crystallization pathways. This study uses the preserved crystal sizes, morphologies and microstructures of Ca–Mg carbonates in the Coorong Lakes (Milne Lake, Pellet Lake and North Stromatolite Lake) to evaluate which crystallization pathway most likely occurred. In the fine‐grained sediments of these lakes, very high magnesium calcite and magnesite occur as aggregate particles of nanocrystals (&lt;100 nm). Rietveld refinements using X‐ray diffraction data give modelled Lvol–IB crystallite size values of &lt;120 nm for all carbonates. Transmission electron microscopy shows that, within VHMC and magnesite particles, nanocrystals have an almost identical orientation of their crystal lattice fringes. This is morphologically similar to Ca–Mg carbonates formed via an amorphous carbonate precursor in non‐classical crystallization laboratory experiments. Precipitation of carbonate minerals via an amorphous‐to‐crystalline pathway requires the water to be supersaturated relative to both crystalline and amorphous phases. In the Coorong Lakes, surface water likely only becomes supersaturated relative to amorphous carbonate phases in the late summer after extensive evaporation. Observations suggest that VHMC and dolomite do not directly precipitate from bulk modern seawater, despite oversaturation relative to the crystalline phases, because seawater is undersaturated with respect to amorphous calcium magnesium carbonate, thus limiting the precipitation through a non‐classical crystallization pathway.</description><subject>Aragonite</subject><subject>Calcite</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Calcium magnesium carbonate</subject><subject>Carbonate minerals</subject><subject>Carbonates</subject><subject>Chemical analysis</subject><subject>Chemical precipitation</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Electron microscopy</subject><subject>Evaporation</subject><subject>Laboratories</subject><subject>Laboratory experimentation</subject><subject>lacustrine carbonates</subject><subject>Lakes</subject><subject>Magnesite</subject><subject>Magnesium</subject><subject>Magnesium carbonate</subject><subject>Minerals</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>non‐classical crystallization</subject><subject>Phases</subject><subject>Precipitation</subject><subject>Seawater</subject><subject>Sediments</subject><subject>Stromatolites</subject><subject>Surface water</subject><subject>Transmission electron microscopy</subject><subject>very high magnesium calcite</subject><subject>Water analysis</subject><issn>0037-0746</issn><issn>1365-3091</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10L1OwzAQB3ALgUQpDLyBJSYk0tpx4sQjKuVDqmAAZuvqOK2LGxc7AYWJR-AZeRIMhREvJ59-dyf9ETqmZETjGwddjWgqBN1BA8p4njAi6C4aEMKKhBQZ30cHIawIoTwrxQDZW9d8vn8oCyEYBRYr34cWrDVv0BrXYFfjF-17vDSLJV7DotHBdGscqTKtxtBUf934Mw1ulxpPnPOuWeAZPOlwhs-70HqwBg7RXg026KPfOkSPl9OHyXUyu7u6mZzPEmC0pImAOmO5YJWGSlFN6wIEqRkBXmRM1FASVVdEURWFSsU8U5xXOYgyV3PIFWVDdLLdu_HuudOhlSvX-SaelCkXlNOsTNOoTrdKeReC17XceLMG30tK5HeYMoYpf8KMdry1r8bq_n8o76cX24kvF0d41A</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Raudsepp, Maija J.</creator><creator>Wilson, Sasha</creator><creator>Morgan, Bree</creator><creator>Patel, Avni</creator><creator>Johnston, Scott G.</creator><creator>Gagen, Emma J.</creator><creator>Fallon, Stewart J.</creator><creator>Tosca, Nicholas</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3189-2972</orcidid></search><sort><creationdate>202208</creationdate><title>Non‐classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia</title><author>Raudsepp, Maija J. ; Wilson, Sasha ; Morgan, Bree ; Patel, Avni ; Johnston, Scott G. ; Gagen, Emma J. ; Fallon, Stewart J. ; Tosca, Nicholas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aragonite</topic><topic>Calcite</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Calcium magnesium carbonate</topic><topic>Carbonate minerals</topic><topic>Carbonates</topic><topic>Chemical analysis</topic><topic>Chemical precipitation</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Electron microscopy</topic><topic>Evaporation</topic><topic>Laboratories</topic><topic>Laboratory experimentation</topic><topic>lacustrine carbonates</topic><topic>Lakes</topic><topic>Magnesite</topic><topic>Magnesium</topic><topic>Magnesium carbonate</topic><topic>Minerals</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>non‐classical crystallization</topic><topic>Phases</topic><topic>Precipitation</topic><topic>Seawater</topic><topic>Sediments</topic><topic>Stromatolites</topic><topic>Surface water</topic><topic>Transmission electron microscopy</topic><topic>very high magnesium calcite</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raudsepp, Maija J.</creatorcontrib><creatorcontrib>Wilson, Sasha</creatorcontrib><creatorcontrib>Morgan, Bree</creatorcontrib><creatorcontrib>Patel, Avni</creatorcontrib><creatorcontrib>Johnston, Scott G.</creatorcontrib><creatorcontrib>Gagen, Emma J.</creatorcontrib><creatorcontrib>Fallon, Stewart J.</creatorcontrib><creatorcontrib>Tosca, Nicholas</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Sedimentology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raudsepp, Maija J.</au><au>Wilson, Sasha</au><au>Morgan, Bree</au><au>Patel, Avni</au><au>Johnston, Scott G.</au><au>Gagen, Emma J.</au><au>Fallon, Stewart J.</au><au>Tosca, Nicholas</au><au>Tosca, Nicholas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia</atitle><jtitle>Sedimentology</jtitle><date>2022-08</date><risdate>2022</risdate><volume>69</volume><issue>5</issue><spage>2246</spage><epage>2266</epage><pages>2246-2266</pages><issn>0037-0746</issn><eissn>1365-3091</eissn><abstract>The Coorong Lakes, South Australia, are one of the models for unravelling the ‘Dolomite Problem’. Critically, today only a few modern environments remain where large quantities of very high magnesium calcite (VHMC; Ca0.5Mg0.5CO3; also described as protodolomite or disordered dolomite) and magnesite (MgCO3) precipitate. Previously conducted laboratory studies demonstrate that carbonate minerals can precipitate via classical and non‐classical crystallization pathways. This study uses the preserved crystal sizes, morphologies and microstructures of Ca–Mg carbonates in the Coorong Lakes (Milne Lake, Pellet Lake and North Stromatolite Lake) to evaluate which crystallization pathway most likely occurred. In the fine‐grained sediments of these lakes, very high magnesium calcite and magnesite occur as aggregate particles of nanocrystals (&lt;100 nm). Rietveld refinements using X‐ray diffraction data give modelled Lvol–IB crystallite size values of &lt;120 nm for all carbonates. Transmission electron microscopy shows that, within VHMC and magnesite particles, nanocrystals have an almost identical orientation of their crystal lattice fringes. This is morphologically similar to Ca–Mg carbonates formed via an amorphous carbonate precursor in non‐classical crystallization laboratory experiments. Precipitation of carbonate minerals via an amorphous‐to‐crystalline pathway requires the water to be supersaturated relative to both crystalline and amorphous phases. In the Coorong Lakes, surface water likely only becomes supersaturated relative to amorphous carbonate phases in the late summer after extensive evaporation. Observations suggest that VHMC and dolomite do not directly precipitate from bulk modern seawater, despite oversaturation relative to the crystalline phases, because seawater is undersaturated with respect to amorphous calcium magnesium carbonate, thus limiting the precipitation through a non‐classical crystallization pathway.</abstract><cop>Madrid</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/sed.12991</doi><tpages>2266</tpages><orcidid>https://orcid.org/0000-0003-3189-2972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0037-0746
ispartof Sedimentology, 2022-08, Vol.69 (5), p.2246-2266
issn 0037-0746
1365-3091
language eng
recordid cdi_proquest_journals_2691614822
source Wiley-Blackwell Read & Publish Collection
subjects Aragonite
Calcite
Calcium
Calcium carbonate
Calcium magnesium carbonate
Carbonate minerals
Carbonates
Chemical analysis
Chemical precipitation
Crystal lattices
Crystal structure
Crystallinity
Crystallites
Crystallization
Crystals
Dolomite
Dolostone
Electron microscopy
Evaporation
Laboratories
Laboratory experimentation
lacustrine carbonates
Lakes
Magnesite
Magnesium
Magnesium carbonate
Minerals
Morphology
Nanocrystals
non‐classical crystallization
Phases
Precipitation
Seawater
Sediments
Stromatolites
Surface water
Transmission electron microscopy
very high magnesium calcite
Water analysis
title Non‐classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90classical%20crystallization%20of%20very%20high%20magnesium%20calcite%20and%20magnesite%20in%20the%20Coorong%20Lakes,%20Australia&rft.jtitle=Sedimentology&rft.au=Raudsepp,%20Maija%20J.&rft.date=2022-08&rft.volume=69&rft.issue=5&rft.spage=2246&rft.epage=2266&rft.pages=2246-2266&rft.issn=0037-0746&rft.eissn=1365-3091&rft_id=info:doi/10.1111/sed.12991&rft_dat=%3Cproquest_cross%3E2691614822%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691614822&rft_id=info:pmid/&rfr_iscdi=true