Loading…
Non‐classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia
The Coorong Lakes, South Australia, are one of the models for unravelling the ‘Dolomite Problem’. Critically, today only a few modern environments remain where large quantities of very high magnesium calcite (VHMC; Ca0.5Mg0.5CO3; also described as protodolomite or disordered dolomite) and magnesite...
Saved in:
Published in: | Sedimentology 2022-08, Vol.69 (5), p.2246-2266 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13 |
---|---|
cites | cdi_FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13 |
container_end_page | 2266 |
container_issue | 5 |
container_start_page | 2246 |
container_title | Sedimentology |
container_volume | 69 |
creator | Raudsepp, Maija J. Wilson, Sasha Morgan, Bree Patel, Avni Johnston, Scott G. Gagen, Emma J. Fallon, Stewart J. Tosca, Nicholas |
description | The Coorong Lakes, South Australia, are one of the models for unravelling the ‘Dolomite Problem’. Critically, today only a few modern environments remain where large quantities of very high magnesium calcite (VHMC; Ca0.5Mg0.5CO3; also described as protodolomite or disordered dolomite) and magnesite (MgCO3) precipitate. Previously conducted laboratory studies demonstrate that carbonate minerals can precipitate via classical and non‐classical crystallization pathways. This study uses the preserved crystal sizes, morphologies and microstructures of Ca–Mg carbonates in the Coorong Lakes (Milne Lake, Pellet Lake and North Stromatolite Lake) to evaluate which crystallization pathway most likely occurred. In the fine‐grained sediments of these lakes, very high magnesium calcite and magnesite occur as aggregate particles of nanocrystals ( |
doi_str_mv | 10.1111/sed.12991 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2691614822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691614822</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpDLyBJSYk0tpx4sQjKuVDqmAAZuvqOK2LGxc7AYWJR-AZeRIMhREvJ59-dyf9ETqmZETjGwddjWgqBN1BA8p4njAi6C4aEMKKhBQZ30cHIawIoTwrxQDZW9d8vn8oCyEYBRYr34cWrDVv0BrXYFfjF-17vDSLJV7DotHBdGscqTKtxtBUf934Mw1ulxpPnPOuWeAZPOlwhs-70HqwBg7RXg026KPfOkSPl9OHyXUyu7u6mZzPEmC0pImAOmO5YJWGSlFN6wIEqRkBXmRM1FASVVdEURWFSsU8U5xXOYgyV3PIFWVDdLLdu_HuudOhlSvX-SaelCkXlNOsTNOoTrdKeReC17XceLMG30tK5HeYMoYpf8KMdry1r8bq_n8o76cX24kvF0d41A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691614822</pqid></control><display><type>article</type><title>Non‐classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Raudsepp, Maija J. ; Wilson, Sasha ; Morgan, Bree ; Patel, Avni ; Johnston, Scott G. ; Gagen, Emma J. ; Fallon, Stewart J. ; Tosca, Nicholas</creator><contributor>Tosca, Nicholas</contributor><creatorcontrib>Raudsepp, Maija J. ; Wilson, Sasha ; Morgan, Bree ; Patel, Avni ; Johnston, Scott G. ; Gagen, Emma J. ; Fallon, Stewart J. ; Tosca, Nicholas ; Tosca, Nicholas</creatorcontrib><description>The Coorong Lakes, South Australia, are one of the models for unravelling the ‘Dolomite Problem’. Critically, today only a few modern environments remain where large quantities of very high magnesium calcite (VHMC; Ca0.5Mg0.5CO3; also described as protodolomite or disordered dolomite) and magnesite (MgCO3) precipitate. Previously conducted laboratory studies demonstrate that carbonate minerals can precipitate via classical and non‐classical crystallization pathways. This study uses the preserved crystal sizes, morphologies and microstructures of Ca–Mg carbonates in the Coorong Lakes (Milne Lake, Pellet Lake and North Stromatolite Lake) to evaluate which crystallization pathway most likely occurred. In the fine‐grained sediments of these lakes, very high magnesium calcite and magnesite occur as aggregate particles of nanocrystals (<100 nm). Rietveld refinements using X‐ray diffraction data give modelled Lvol–IB crystallite size values of <120 nm for all carbonates. Transmission electron microscopy shows that, within VHMC and magnesite particles, nanocrystals have an almost identical orientation of their crystal lattice fringes. This is morphologically similar to Ca–Mg carbonates formed via an amorphous carbonate precursor in non‐classical crystallization laboratory experiments. Precipitation of carbonate minerals via an amorphous‐to‐crystalline pathway requires the water to be supersaturated relative to both crystalline and amorphous phases. In the Coorong Lakes, surface water likely only becomes supersaturated relative to amorphous carbonate phases in the late summer after extensive evaporation. Observations suggest that VHMC and dolomite do not directly precipitate from bulk modern seawater, despite oversaturation relative to the crystalline phases, because seawater is undersaturated with respect to amorphous calcium magnesium carbonate, thus limiting the precipitation through a non‐classical crystallization pathway.</description><identifier>ISSN: 0037-0746</identifier><identifier>EISSN: 1365-3091</identifier><identifier>DOI: 10.1111/sed.12991</identifier><language>eng</language><publisher>Madrid: Wiley Subscription Services, Inc</publisher><subject>Aragonite ; Calcite ; Calcium ; Calcium carbonate ; Calcium magnesium carbonate ; Carbonate minerals ; Carbonates ; Chemical analysis ; Chemical precipitation ; Crystal lattices ; Crystal structure ; Crystallinity ; Crystallites ; Crystallization ; Crystals ; Dolomite ; Dolostone ; Electron microscopy ; Evaporation ; Laboratories ; Laboratory experimentation ; lacustrine carbonates ; Lakes ; Magnesite ; Magnesium ; Magnesium carbonate ; Minerals ; Morphology ; Nanocrystals ; non‐classical crystallization ; Phases ; Precipitation ; Seawater ; Sediments ; Stromatolites ; Surface water ; Transmission electron microscopy ; very high magnesium calcite ; Water analysis</subject><ispartof>Sedimentology, 2022-08, Vol.69 (5), p.2246-2266</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologists</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13</citedby><cites>FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13</cites><orcidid>0000-0003-3189-2972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Tosca, Nicholas</contributor><creatorcontrib>Raudsepp, Maija J.</creatorcontrib><creatorcontrib>Wilson, Sasha</creatorcontrib><creatorcontrib>Morgan, Bree</creatorcontrib><creatorcontrib>Patel, Avni</creatorcontrib><creatorcontrib>Johnston, Scott G.</creatorcontrib><creatorcontrib>Gagen, Emma J.</creatorcontrib><creatorcontrib>Fallon, Stewart J.</creatorcontrib><creatorcontrib>Tosca, Nicholas</creatorcontrib><title>Non‐classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia</title><title>Sedimentology</title><description>The Coorong Lakes, South Australia, are one of the models for unravelling the ‘Dolomite Problem’. Critically, today only a few modern environments remain where large quantities of very high magnesium calcite (VHMC; Ca0.5Mg0.5CO3; also described as protodolomite or disordered dolomite) and magnesite (MgCO3) precipitate. Previously conducted laboratory studies demonstrate that carbonate minerals can precipitate via classical and non‐classical crystallization pathways. This study uses the preserved crystal sizes, morphologies and microstructures of Ca–Mg carbonates in the Coorong Lakes (Milne Lake, Pellet Lake and North Stromatolite Lake) to evaluate which crystallization pathway most likely occurred. In the fine‐grained sediments of these lakes, very high magnesium calcite and magnesite occur as aggregate particles of nanocrystals (<100 nm). Rietveld refinements using X‐ray diffraction data give modelled Lvol–IB crystallite size values of <120 nm for all carbonates. Transmission electron microscopy shows that, within VHMC and magnesite particles, nanocrystals have an almost identical orientation of their crystal lattice fringes. This is morphologically similar to Ca–Mg carbonates formed via an amorphous carbonate precursor in non‐classical crystallization laboratory experiments. Precipitation of carbonate minerals via an amorphous‐to‐crystalline pathway requires the water to be supersaturated relative to both crystalline and amorphous phases. In the Coorong Lakes, surface water likely only becomes supersaturated relative to amorphous carbonate phases in the late summer after extensive evaporation. Observations suggest that VHMC and dolomite do not directly precipitate from bulk modern seawater, despite oversaturation relative to the crystalline phases, because seawater is undersaturated with respect to amorphous calcium magnesium carbonate, thus limiting the precipitation through a non‐classical crystallization pathway.</description><subject>Aragonite</subject><subject>Calcite</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Calcium magnesium carbonate</subject><subject>Carbonate minerals</subject><subject>Carbonates</subject><subject>Chemical analysis</subject><subject>Chemical precipitation</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Electron microscopy</subject><subject>Evaporation</subject><subject>Laboratories</subject><subject>Laboratory experimentation</subject><subject>lacustrine carbonates</subject><subject>Lakes</subject><subject>Magnesite</subject><subject>Magnesium</subject><subject>Magnesium carbonate</subject><subject>Minerals</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>non‐classical crystallization</subject><subject>Phases</subject><subject>Precipitation</subject><subject>Seawater</subject><subject>Sediments</subject><subject>Stromatolites</subject><subject>Surface water</subject><subject>Transmission electron microscopy</subject><subject>very high magnesium calcite</subject><subject>Water analysis</subject><issn>0037-0746</issn><issn>1365-3091</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10L1OwzAQB3ALgUQpDLyBJSYk0tpx4sQjKuVDqmAAZuvqOK2LGxc7AYWJR-AZeRIMhREvJ59-dyf9ETqmZETjGwddjWgqBN1BA8p4njAi6C4aEMKKhBQZ30cHIawIoTwrxQDZW9d8vn8oCyEYBRYr34cWrDVv0BrXYFfjF-17vDSLJV7DotHBdGscqTKtxtBUf934Mw1ulxpPnPOuWeAZPOlwhs-70HqwBg7RXg026KPfOkSPl9OHyXUyu7u6mZzPEmC0pImAOmO5YJWGSlFN6wIEqRkBXmRM1FASVVdEURWFSsU8U5xXOYgyV3PIFWVDdLLdu_HuudOhlSvX-SaelCkXlNOsTNOoTrdKeReC17XceLMG30tK5HeYMoYpf8KMdry1r8bq_n8o76cX24kvF0d41A</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Raudsepp, Maija J.</creator><creator>Wilson, Sasha</creator><creator>Morgan, Bree</creator><creator>Patel, Avni</creator><creator>Johnston, Scott G.</creator><creator>Gagen, Emma J.</creator><creator>Fallon, Stewart J.</creator><creator>Tosca, Nicholas</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3189-2972</orcidid></search><sort><creationdate>202208</creationdate><title>Non‐classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia</title><author>Raudsepp, Maija J. ; Wilson, Sasha ; Morgan, Bree ; Patel, Avni ; Johnston, Scott G. ; Gagen, Emma J. ; Fallon, Stewart J. ; Tosca, Nicholas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aragonite</topic><topic>Calcite</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Calcium magnesium carbonate</topic><topic>Carbonate minerals</topic><topic>Carbonates</topic><topic>Chemical analysis</topic><topic>Chemical precipitation</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Electron microscopy</topic><topic>Evaporation</topic><topic>Laboratories</topic><topic>Laboratory experimentation</topic><topic>lacustrine carbonates</topic><topic>Lakes</topic><topic>Magnesite</topic><topic>Magnesium</topic><topic>Magnesium carbonate</topic><topic>Minerals</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>non‐classical crystallization</topic><topic>Phases</topic><topic>Precipitation</topic><topic>Seawater</topic><topic>Sediments</topic><topic>Stromatolites</topic><topic>Surface water</topic><topic>Transmission electron microscopy</topic><topic>very high magnesium calcite</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raudsepp, Maija J.</creatorcontrib><creatorcontrib>Wilson, Sasha</creatorcontrib><creatorcontrib>Morgan, Bree</creatorcontrib><creatorcontrib>Patel, Avni</creatorcontrib><creatorcontrib>Johnston, Scott G.</creatorcontrib><creatorcontrib>Gagen, Emma J.</creatorcontrib><creatorcontrib>Fallon, Stewart J.</creatorcontrib><creatorcontrib>Tosca, Nicholas</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Sedimentology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raudsepp, Maija J.</au><au>Wilson, Sasha</au><au>Morgan, Bree</au><au>Patel, Avni</au><au>Johnston, Scott G.</au><au>Gagen, Emma J.</au><au>Fallon, Stewart J.</au><au>Tosca, Nicholas</au><au>Tosca, Nicholas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia</atitle><jtitle>Sedimentology</jtitle><date>2022-08</date><risdate>2022</risdate><volume>69</volume><issue>5</issue><spage>2246</spage><epage>2266</epage><pages>2246-2266</pages><issn>0037-0746</issn><eissn>1365-3091</eissn><abstract>The Coorong Lakes, South Australia, are one of the models for unravelling the ‘Dolomite Problem’. Critically, today only a few modern environments remain where large quantities of very high magnesium calcite (VHMC; Ca0.5Mg0.5CO3; also described as protodolomite or disordered dolomite) and magnesite (MgCO3) precipitate. Previously conducted laboratory studies demonstrate that carbonate minerals can precipitate via classical and non‐classical crystallization pathways. This study uses the preserved crystal sizes, morphologies and microstructures of Ca–Mg carbonates in the Coorong Lakes (Milne Lake, Pellet Lake and North Stromatolite Lake) to evaluate which crystallization pathway most likely occurred. In the fine‐grained sediments of these lakes, very high magnesium calcite and magnesite occur as aggregate particles of nanocrystals (<100 nm). Rietveld refinements using X‐ray diffraction data give modelled Lvol–IB crystallite size values of <120 nm for all carbonates. Transmission electron microscopy shows that, within VHMC and magnesite particles, nanocrystals have an almost identical orientation of their crystal lattice fringes. This is morphologically similar to Ca–Mg carbonates formed via an amorphous carbonate precursor in non‐classical crystallization laboratory experiments. Precipitation of carbonate minerals via an amorphous‐to‐crystalline pathway requires the water to be supersaturated relative to both crystalline and amorphous phases. In the Coorong Lakes, surface water likely only becomes supersaturated relative to amorphous carbonate phases in the late summer after extensive evaporation. Observations suggest that VHMC and dolomite do not directly precipitate from bulk modern seawater, despite oversaturation relative to the crystalline phases, because seawater is undersaturated with respect to amorphous calcium magnesium carbonate, thus limiting the precipitation through a non‐classical crystallization pathway.</abstract><cop>Madrid</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/sed.12991</doi><tpages>2266</tpages><orcidid>https://orcid.org/0000-0003-3189-2972</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-0746 |
ispartof | Sedimentology, 2022-08, Vol.69 (5), p.2246-2266 |
issn | 0037-0746 1365-3091 |
language | eng |
recordid | cdi_proquest_journals_2691614822 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aragonite Calcite Calcium Calcium carbonate Calcium magnesium carbonate Carbonate minerals Carbonates Chemical analysis Chemical precipitation Crystal lattices Crystal structure Crystallinity Crystallites Crystallization Crystals Dolomite Dolostone Electron microscopy Evaporation Laboratories Laboratory experimentation lacustrine carbonates Lakes Magnesite Magnesium Magnesium carbonate Minerals Morphology Nanocrystals non‐classical crystallization Phases Precipitation Seawater Sediments Stromatolites Surface water Transmission electron microscopy very high magnesium calcite Water analysis |
title | Non‐classical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90classical%20crystallization%20of%20very%20high%20magnesium%20calcite%20and%20magnesite%20in%20the%20Coorong%20Lakes,%20Australia&rft.jtitle=Sedimentology&rft.au=Raudsepp,%20Maija%20J.&rft.date=2022-08&rft.volume=69&rft.issue=5&rft.spage=2246&rft.epage=2266&rft.pages=2246-2266&rft.issn=0037-0746&rft.eissn=1365-3091&rft_id=info:doi/10.1111/sed.12991&rft_dat=%3Cproquest_cross%3E2691614822%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3181-9af43593deadc1e1f7a90f30a67439fa80cfd0c1c3dec29b4c66d5a985cba5c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691614822&rft_id=info:pmid/&rfr_iscdi=true |