Loading…

Construction of classification models for pathogenic bacteria based on LIBS combined with different machine learning algorithms

Bacteria, especially foodborne pathogens, seriously threaten human life and health. Rapid discrimination techniques for foodborne pathogens are still urgently needed. At present, laser-induced breakdown spectroscopy (LIBS), combined with machine learning algorithms, is seen as fast recognition techn...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2022-07, Vol.61 (21), p.6177
Main Authors: Sun, Haorui, Yang, Canran, Chen, Youyuan, Duan, Yixiang, Fan, Qingwen, Lin, Qingyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bacteria, especially foodborne pathogens, seriously threaten human life and health. Rapid discrimination techniques for foodborne pathogens are still urgently needed. At present, laser-induced breakdown spectroscopy (LIBS), combined with machine learning algorithms, is seen as fast recognition technology for pathogenic bacteria. However, there is still a lack of research on evaluating the differences between different bacterial classification models. In this work, five species of foodborne pathogens were analyzed via LIBS; then, the preprocessing effect of five filtering methods was compared to improve accuracy. The preprocessed spectral data were further analyzed with a support vector machine (SVM), a backpropagation neural network (BP), and k -nearest neighbor (KNN). Upon comparing the capacity of the three algorithms to classify pathogenic bacteria, the most suitable one was selected. The signal-to-noise ratio and mean square error of the spectral data after applying a Savitzky–Golay filter reached 17.4540 and 0.0020, respectively. The SVM algorithm, BP algorithm, and KNN algorithm attained the highest classification accuracy for pathogenic bacteria, reaching 98%, 97%, and 96%, respectively. The results indicate that, with the support of a machine learning algorithm, LIBS technology demonstrates superior performance, and the combination of the two is expected to be a powerful tool for pathogen classification.
ISSN:1559-128X
2155-3165
DOI:10.1364/AO.463278