Loading…

Spacetime entanglement entropy: covariance and discreteness

We review some recent results on Sorkin’s spacetime formulation of the entanglement entropy (SSEE) for a free quantum scalar field both in the continuum and in manifold-like causal sets. The SSEE for a causal diamond in a 2d cylinder spacetime has been shown to have a Calabrese–Cardy form, while for...

Full description

Saved in:
Bibliographic Details
Published in:General relativity and gravitation 2022-07, Vol.54 (7), Article 74
Main Authors: Mathur, Abhishek, Surya, Sumati, Nomaan, X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We review some recent results on Sorkin’s spacetime formulation of the entanglement entropy (SSEE) for a free quantum scalar field both in the continuum and in manifold-like causal sets. The SSEE for a causal diamond in a 2d cylinder spacetime has been shown to have a Calabrese–Cardy form, while for de Sitter and Schwarzschild de Sitter horizons in dimensions d > 2 , it matches the mode-wise von-Neumann entropy. In these continuum examples the SSEE is regulated by imposing a UV cut-off. Manifold-like causal sets come with a natural covariant spacetime cut-off and thus provide an arena to study regulated QFT. However, the SSEE for different manifold-like causal sets in d = 2 and d = 4 has been shown to exhibit a volume rather than an area law. The area law is recovered only when an additional UV cut-off is implemented in the scaling regime of the spectrum which mimics the continuum behaviour. We discuss the implications of these results and suggest that a volume-law may be a manifestation of the fundamental non-locality of causal sets and a sign of new UV physics.
ISSN:0001-7701
1572-9532
DOI:10.1007/s10714-022-02948-x