Loading…

Spacetime entanglement entropy: covariance and discreteness

We review some recent results on Sorkin’s spacetime formulation of the entanglement entropy (SSEE) for a free quantum scalar field both in the continuum and in manifold-like causal sets. The SSEE for a causal diamond in a 2d cylinder spacetime has been shown to have a Calabrese–Cardy form, while for...

Full description

Saved in:
Bibliographic Details
Published in:General relativity and gravitation 2022-07, Vol.54 (7), Article 74
Main Authors: Mathur, Abhishek, Surya, Sumati, Nomaan, X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73
cites cdi_FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73
container_end_page
container_issue 7
container_start_page
container_title General relativity and gravitation
container_volume 54
creator Mathur, Abhishek
Surya, Sumati
Nomaan, X.
description We review some recent results on Sorkin’s spacetime formulation of the entanglement entropy (SSEE) for a free quantum scalar field both in the continuum and in manifold-like causal sets. The SSEE for a causal diamond in a 2d cylinder spacetime has been shown to have a Calabrese–Cardy form, while for de Sitter and Schwarzschild de Sitter horizons in dimensions d > 2 , it matches the mode-wise von-Neumann entropy. In these continuum examples the SSEE is regulated by imposing a UV cut-off. Manifold-like causal sets come with a natural covariant spacetime cut-off and thus provide an arena to study regulated QFT. However, the SSEE for different manifold-like causal sets in d = 2 and d = 4 has been shown to exhibit a volume rather than an area law. The area law is recovered only when an additional UV cut-off is implemented in the scaling regime of the spectrum which mimics the continuum behaviour. We discuss the implications of these results and suggest that a volume-law may be a manifestation of the fundamental non-locality of causal sets and a sign of new UV physics.
doi_str_mv 10.1007/s10714-022-02948-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693090679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693090679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjMEf4FSJc8BJ26SBE5r4kiZxAM6Rl7pTpy0tSYe2f09GkbhxsOwnvednP8YuBVwLAH0TBWhRcJAylSkqvjtiE1FqyU2Zy2M2AQDBtQZxys5iXCVotNITdvfWo6Oh3VBGfkC_XNMmDQcQun5_m7nuC0OL3lGGvs7qNrpAA3mK8ZydNLiOdPHbp-zj8eF99sznr08vs_s5d7kwA690cpCmJGwKWSA1DnK1QEGLdIVSUBlUosACnHR1XaVHlJPaYVUabepG51N2Ne7tQ_e5pTjYVbcNPllaqUwOBpQ2iSVHlgtdjIEa24d2g2FvBdhDSHYMyaaQ7E9IdpdE-SiKieyXFP5W_6P6BouzarI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693090679</pqid></control><display><type>article</type><title>Spacetime entanglement entropy: covariance and discreteness</title><source>Springer Nature</source><creator>Mathur, Abhishek ; Surya, Sumati ; Nomaan, X.</creator><creatorcontrib>Mathur, Abhishek ; Surya, Sumati ; Nomaan, X.</creatorcontrib><description>We review some recent results on Sorkin’s spacetime formulation of the entanglement entropy (SSEE) for a free quantum scalar field both in the continuum and in manifold-like causal sets. The SSEE for a causal diamond in a 2d cylinder spacetime has been shown to have a Calabrese–Cardy form, while for de Sitter and Schwarzschild de Sitter horizons in dimensions d &gt; 2 , it matches the mode-wise von-Neumann entropy. In these continuum examples the SSEE is regulated by imposing a UV cut-off. Manifold-like causal sets come with a natural covariant spacetime cut-off and thus provide an arena to study regulated QFT. However, the SSEE for different manifold-like causal sets in d = 2 and d = 4 has been shown to exhibit a volume rather than an area law. The area law is recovered only when an additional UV cut-off is implemented in the scaling regime of the spectrum which mimics the continuum behaviour. We discuss the implications of these results and suggest that a volume-law may be a manifestation of the fundamental non-locality of causal sets and a sign of new UV physics.</description><identifier>ISSN: 0001-7701</identifier><identifier>EISSN: 1572-9532</identifier><identifier>DOI: 10.1007/s10714-022-02948-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Classical and Quantum Gravitation ; Diamonds ; Differential Geometry ; Entropy ; Gravity ; Legislation ; Manifolds ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Review Article ; Scalars ; Spacetime ; Theoretical</subject><ispartof>General relativity and gravitation, 2022-07, Vol.54 (7), Article 74</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73</citedby><cites>FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73</cites><orcidid>0000-0002-3735-617X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mathur, Abhishek</creatorcontrib><creatorcontrib>Surya, Sumati</creatorcontrib><creatorcontrib>Nomaan, X.</creatorcontrib><title>Spacetime entanglement entropy: covariance and discreteness</title><title>General relativity and gravitation</title><addtitle>Gen Relativ Gravit</addtitle><description>We review some recent results on Sorkin’s spacetime formulation of the entanglement entropy (SSEE) for a free quantum scalar field both in the continuum and in manifold-like causal sets. The SSEE for a causal diamond in a 2d cylinder spacetime has been shown to have a Calabrese–Cardy form, while for de Sitter and Schwarzschild de Sitter horizons in dimensions d &gt; 2 , it matches the mode-wise von-Neumann entropy. In these continuum examples the SSEE is regulated by imposing a UV cut-off. Manifold-like causal sets come with a natural covariant spacetime cut-off and thus provide an arena to study regulated QFT. However, the SSEE for different manifold-like causal sets in d = 2 and d = 4 has been shown to exhibit a volume rather than an area law. The area law is recovered only when an additional UV cut-off is implemented in the scaling regime of the spectrum which mimics the continuum behaviour. We discuss the implications of these results and suggest that a volume-law may be a manifestation of the fundamental non-locality of causal sets and a sign of new UV physics.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Classical and Quantum Gravitation</subject><subject>Diamonds</subject><subject>Differential Geometry</subject><subject>Entropy</subject><subject>Gravity</subject><subject>Legislation</subject><subject>Manifolds</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Review Article</subject><subject>Scalars</subject><subject>Spacetime</subject><subject>Theoretical</subject><issn>0001-7701</issn><issn>1572-9532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjMEf4FSJc8BJ26SBE5r4kiZxAM6Rl7pTpy0tSYe2f09GkbhxsOwnvednP8YuBVwLAH0TBWhRcJAylSkqvjtiE1FqyU2Zy2M2AQDBtQZxys5iXCVotNITdvfWo6Oh3VBGfkC_XNMmDQcQun5_m7nuC0OL3lGGvs7qNrpAA3mK8ZydNLiOdPHbp-zj8eF99sznr08vs_s5d7kwA690cpCmJGwKWSA1DnK1QEGLdIVSUBlUosACnHR1XaVHlJPaYVUabepG51N2Ne7tQ_e5pTjYVbcNPllaqUwOBpQ2iSVHlgtdjIEa24d2g2FvBdhDSHYMyaaQ7E9IdpdE-SiKieyXFP5W_6P6BouzarI</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Mathur, Abhishek</creator><creator>Surya, Sumati</creator><creator>Nomaan, X.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3735-617X</orcidid></search><sort><creationdate>20220701</creationdate><title>Spacetime entanglement entropy: covariance and discreteness</title><author>Mathur, Abhishek ; Surya, Sumati ; Nomaan, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Classical and Quantum Gravitation</topic><topic>Diamonds</topic><topic>Differential Geometry</topic><topic>Entropy</topic><topic>Gravity</topic><topic>Legislation</topic><topic>Manifolds</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Review Article</topic><topic>Scalars</topic><topic>Spacetime</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathur, Abhishek</creatorcontrib><creatorcontrib>Surya, Sumati</creatorcontrib><creatorcontrib>Nomaan, X.</creatorcontrib><collection>CrossRef</collection><jtitle>General relativity and gravitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathur, Abhishek</au><au>Surya, Sumati</au><au>Nomaan, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spacetime entanglement entropy: covariance and discreteness</atitle><jtitle>General relativity and gravitation</jtitle><stitle>Gen Relativ Gravit</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>54</volume><issue>7</issue><artnum>74</artnum><issn>0001-7701</issn><eissn>1572-9532</eissn><abstract>We review some recent results on Sorkin’s spacetime formulation of the entanglement entropy (SSEE) for a free quantum scalar field both in the continuum and in manifold-like causal sets. The SSEE for a causal diamond in a 2d cylinder spacetime has been shown to have a Calabrese–Cardy form, while for de Sitter and Schwarzschild de Sitter horizons in dimensions d &gt; 2 , it matches the mode-wise von-Neumann entropy. In these continuum examples the SSEE is regulated by imposing a UV cut-off. Manifold-like causal sets come with a natural covariant spacetime cut-off and thus provide an arena to study regulated QFT. However, the SSEE for different manifold-like causal sets in d = 2 and d = 4 has been shown to exhibit a volume rather than an area law. The area law is recovered only when an additional UV cut-off is implemented in the scaling regime of the spectrum which mimics the continuum behaviour. We discuss the implications of these results and suggest that a volume-law may be a manifestation of the fundamental non-locality of causal sets and a sign of new UV physics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10714-022-02948-x</doi><orcidid>https://orcid.org/0000-0002-3735-617X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-7701
ispartof General relativity and gravitation, 2022-07, Vol.54 (7), Article 74
issn 0001-7701
1572-9532
language eng
recordid cdi_proquest_journals_2693090679
source Springer Nature
subjects Astronomy
Astrophysics and Cosmology
Classical and Quantum Gravitation
Diamonds
Differential Geometry
Entropy
Gravity
Legislation
Manifolds
Mathematical and Computational Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Review Article
Scalars
Spacetime
Theoretical
title Spacetime entanglement entropy: covariance and discreteness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spacetime%20entanglement%20entropy:%20covariance%20and%20discreteness&rft.jtitle=General%20relativity%20and%20gravitation&rft.au=Mathur,%20Abhishek&rft.date=2022-07-01&rft.volume=54&rft.issue=7&rft.artnum=74&rft.issn=0001-7701&rft.eissn=1572-9532&rft_id=info:doi/10.1007/s10714-022-02948-x&rft_dat=%3Cproquest_cross%3E2693090679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2693090679&rft_id=info:pmid/&rfr_iscdi=true