Loading…
Spacetime entanglement entropy: covariance and discreteness
We review some recent results on Sorkin’s spacetime formulation of the entanglement entropy (SSEE) for a free quantum scalar field both in the continuum and in manifold-like causal sets. The SSEE for a causal diamond in a 2d cylinder spacetime has been shown to have a Calabrese–Cardy form, while for...
Saved in:
Published in: | General relativity and gravitation 2022-07, Vol.54 (7), Article 74 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | General relativity and gravitation |
container_volume | 54 |
creator | Mathur, Abhishek Surya, Sumati Nomaan, X. |
description | We review some recent results on Sorkin’s spacetime formulation of the entanglement entropy (SSEE) for a free quantum scalar field both in the continuum and in manifold-like causal sets. The SSEE for a causal diamond in a 2d cylinder spacetime has been shown to have a Calabrese–Cardy form, while for de Sitter and Schwarzschild de Sitter horizons in dimensions
d
>
2
, it matches the mode-wise von-Neumann entropy. In these continuum examples the SSEE is regulated by imposing a UV cut-off. Manifold-like causal sets come with a natural covariant spacetime cut-off and thus provide an arena to study regulated QFT. However, the SSEE for different manifold-like causal sets in
d
=
2
and
d
=
4
has been shown to exhibit a volume rather than an area law. The area law is recovered only when an additional UV cut-off is implemented in the scaling regime of the spectrum which mimics the continuum behaviour. We discuss the implications of these results and suggest that a volume-law may be a manifestation of the fundamental non-locality of causal sets and a sign of new UV physics. |
doi_str_mv | 10.1007/s10714-022-02948-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693090679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693090679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjMEf4FSJc8BJ26SBE5r4kiZxAM6Rl7pTpy0tSYe2f09GkbhxsOwnvednP8YuBVwLAH0TBWhRcJAylSkqvjtiE1FqyU2Zy2M2AQDBtQZxys5iXCVotNITdvfWo6Oh3VBGfkC_XNMmDQcQun5_m7nuC0OL3lGGvs7qNrpAA3mK8ZydNLiOdPHbp-zj8eF99sznr08vs_s5d7kwA690cpCmJGwKWSA1DnK1QEGLdIVSUBlUosACnHR1XaVHlJPaYVUabepG51N2Ne7tQ_e5pTjYVbcNPllaqUwOBpQ2iSVHlgtdjIEa24d2g2FvBdhDSHYMyaaQ7E9IdpdE-SiKieyXFP5W_6P6BouzarI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693090679</pqid></control><display><type>article</type><title>Spacetime entanglement entropy: covariance and discreteness</title><source>Springer Nature</source><creator>Mathur, Abhishek ; Surya, Sumati ; Nomaan, X.</creator><creatorcontrib>Mathur, Abhishek ; Surya, Sumati ; Nomaan, X.</creatorcontrib><description>We review some recent results on Sorkin’s spacetime formulation of the entanglement entropy (SSEE) for a free quantum scalar field both in the continuum and in manifold-like causal sets. The SSEE for a causal diamond in a 2d cylinder spacetime has been shown to have a Calabrese–Cardy form, while for de Sitter and Schwarzschild de Sitter horizons in dimensions
d
>
2
, it matches the mode-wise von-Neumann entropy. In these continuum examples the SSEE is regulated by imposing a UV cut-off. Manifold-like causal sets come with a natural covariant spacetime cut-off and thus provide an arena to study regulated QFT. However, the SSEE for different manifold-like causal sets in
d
=
2
and
d
=
4
has been shown to exhibit a volume rather than an area law. The area law is recovered only when an additional UV cut-off is implemented in the scaling regime of the spectrum which mimics the continuum behaviour. We discuss the implications of these results and suggest that a volume-law may be a manifestation of the fundamental non-locality of causal sets and a sign of new UV physics.</description><identifier>ISSN: 0001-7701</identifier><identifier>EISSN: 1572-9532</identifier><identifier>DOI: 10.1007/s10714-022-02948-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Classical and Quantum Gravitation ; Diamonds ; Differential Geometry ; Entropy ; Gravity ; Legislation ; Manifolds ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Review Article ; Scalars ; Spacetime ; Theoretical</subject><ispartof>General relativity and gravitation, 2022-07, Vol.54 (7), Article 74</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73</citedby><cites>FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73</cites><orcidid>0000-0002-3735-617X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mathur, Abhishek</creatorcontrib><creatorcontrib>Surya, Sumati</creatorcontrib><creatorcontrib>Nomaan, X.</creatorcontrib><title>Spacetime entanglement entropy: covariance and discreteness</title><title>General relativity and gravitation</title><addtitle>Gen Relativ Gravit</addtitle><description>We review some recent results on Sorkin’s spacetime formulation of the entanglement entropy (SSEE) for a free quantum scalar field both in the continuum and in manifold-like causal sets. The SSEE for a causal diamond in a 2d cylinder spacetime has been shown to have a Calabrese–Cardy form, while for de Sitter and Schwarzschild de Sitter horizons in dimensions
d
>
2
, it matches the mode-wise von-Neumann entropy. In these continuum examples the SSEE is regulated by imposing a UV cut-off. Manifold-like causal sets come with a natural covariant spacetime cut-off and thus provide an arena to study regulated QFT. However, the SSEE for different manifold-like causal sets in
d
=
2
and
d
=
4
has been shown to exhibit a volume rather than an area law. The area law is recovered only when an additional UV cut-off is implemented in the scaling regime of the spectrum which mimics the continuum behaviour. We discuss the implications of these results and suggest that a volume-law may be a manifestation of the fundamental non-locality of causal sets and a sign of new UV physics.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Classical and Quantum Gravitation</subject><subject>Diamonds</subject><subject>Differential Geometry</subject><subject>Entropy</subject><subject>Gravity</subject><subject>Legislation</subject><subject>Manifolds</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Review Article</subject><subject>Scalars</subject><subject>Spacetime</subject><subject>Theoretical</subject><issn>0001-7701</issn><issn>1572-9532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjMEf4FSJc8BJ26SBE5r4kiZxAM6Rl7pTpy0tSYe2f09GkbhxsOwnvednP8YuBVwLAH0TBWhRcJAylSkqvjtiE1FqyU2Zy2M2AQDBtQZxys5iXCVotNITdvfWo6Oh3VBGfkC_XNMmDQcQun5_m7nuC0OL3lGGvs7qNrpAA3mK8ZydNLiOdPHbp-zj8eF99sznr08vs_s5d7kwA690cpCmJGwKWSA1DnK1QEGLdIVSUBlUosACnHR1XaVHlJPaYVUabepG51N2Ne7tQ_e5pTjYVbcNPllaqUwOBpQ2iSVHlgtdjIEa24d2g2FvBdhDSHYMyaaQ7E9IdpdE-SiKieyXFP5W_6P6BouzarI</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Mathur, Abhishek</creator><creator>Surya, Sumati</creator><creator>Nomaan, X.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3735-617X</orcidid></search><sort><creationdate>20220701</creationdate><title>Spacetime entanglement entropy: covariance and discreteness</title><author>Mathur, Abhishek ; Surya, Sumati ; Nomaan, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Classical and Quantum Gravitation</topic><topic>Diamonds</topic><topic>Differential Geometry</topic><topic>Entropy</topic><topic>Gravity</topic><topic>Legislation</topic><topic>Manifolds</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Review Article</topic><topic>Scalars</topic><topic>Spacetime</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathur, Abhishek</creatorcontrib><creatorcontrib>Surya, Sumati</creatorcontrib><creatorcontrib>Nomaan, X.</creatorcontrib><collection>CrossRef</collection><jtitle>General relativity and gravitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathur, Abhishek</au><au>Surya, Sumati</au><au>Nomaan, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spacetime entanglement entropy: covariance and discreteness</atitle><jtitle>General relativity and gravitation</jtitle><stitle>Gen Relativ Gravit</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>54</volume><issue>7</issue><artnum>74</artnum><issn>0001-7701</issn><eissn>1572-9532</eissn><abstract>We review some recent results on Sorkin’s spacetime formulation of the entanglement entropy (SSEE) for a free quantum scalar field both in the continuum and in manifold-like causal sets. The SSEE for a causal diamond in a 2d cylinder spacetime has been shown to have a Calabrese–Cardy form, while for de Sitter and Schwarzschild de Sitter horizons in dimensions
d
>
2
, it matches the mode-wise von-Neumann entropy. In these continuum examples the SSEE is regulated by imposing a UV cut-off. Manifold-like causal sets come with a natural covariant spacetime cut-off and thus provide an arena to study regulated QFT. However, the SSEE for different manifold-like causal sets in
d
=
2
and
d
=
4
has been shown to exhibit a volume rather than an area law. The area law is recovered only when an additional UV cut-off is implemented in the scaling regime of the spectrum which mimics the continuum behaviour. We discuss the implications of these results and suggest that a volume-law may be a manifestation of the fundamental non-locality of causal sets and a sign of new UV physics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10714-022-02948-x</doi><orcidid>https://orcid.org/0000-0002-3735-617X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-7701 |
ispartof | General relativity and gravitation, 2022-07, Vol.54 (7), Article 74 |
issn | 0001-7701 1572-9532 |
language | eng |
recordid | cdi_proquest_journals_2693090679 |
source | Springer Nature |
subjects | Astronomy Astrophysics and Cosmology Classical and Quantum Gravitation Diamonds Differential Geometry Entropy Gravity Legislation Manifolds Mathematical and Computational Physics Physics Physics and Astronomy Quantum Physics Relativity Theory Review Article Scalars Spacetime Theoretical |
title | Spacetime entanglement entropy: covariance and discreteness |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spacetime%20entanglement%20entropy:%20covariance%20and%20discreteness&rft.jtitle=General%20relativity%20and%20gravitation&rft.au=Mathur,%20Abhishek&rft.date=2022-07-01&rft.volume=54&rft.issue=7&rft.artnum=74&rft.issn=0001-7701&rft.eissn=1572-9532&rft_id=info:doi/10.1007/s10714-022-02948-x&rft_dat=%3Cproquest_cross%3E2693090679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-87ace295eaf424aefc036ba1eb00066089a614a40c2cdd80716c27ca85979df73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2693090679&rft_id=info:pmid/&rfr_iscdi=true |