Loading…

Giant room temperature magnetocaloric response in a (MnNiSi)1−x(FeNiGa)x system

The coincidence of magnetic and structural transitions near room temperature is observed in (MnNiSi)1−x(FeNiGa)x (x = 0.16 and 0.17) systems, which leads to a coupled magnetostructural transition (MST) from a high-temperature paramagnetic Ni2In-type hexagonal phase to a low-temperature ferromagnetic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2022-07, Vol.132 (4)
Main Authors: Ghosh, Subrata, Samanta, Saheli, Sridhar Mohanty, J., Sinha, Jayee, Mandal, Kalyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The coincidence of magnetic and structural transitions near room temperature is observed in (MnNiSi)1−x(FeNiGa)x (x = 0.16 and 0.17) systems, which leads to a coupled magnetostructural transition (MST) from a high-temperature paramagnetic Ni2In-type hexagonal phase to a low-temperature ferromagnetic TiNiSi-type orthorhombic phase associated with a substantial change in magnetization and a large change in structural unit cell volume, and thus, across MST, a giant magnetocaloric effect is obtained in these systems. The alloys with x = 0.16 and 0.17 are observed to show a giant isothermal magnetic entropy change (ΔSM) of about −26.2 and −63.2 J kg−1 K−1, accompanied with a large relative cooling power of about 220.1 and 264.5 J/kg, respectively, due to a magnetic field change (μ0ΔH) of 5 T only. Moreover, the material with x = 0.16 and 0.17 shows a large temperature average magnetic entropy change of about −21.64 and −34.4 J kg−1 K−1 over a temperature span of 10 K due to μ0ΔH ∼ 5 T. Thus, these low-cost materials with giant magnetocaloric responses are highly suitable to be used as magnetic refrigerants for room temperature solid-state-based cooling technology.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0098679