Loading…
Effective numerical technique for solving variable order integro-differential equations
In this article, an effective numerical technique for solving the variable order Fredholm–Volterra integro-differential equations (VO-FV-IDEs), systems of VO-FV-IDEs and variable order Volterra partial integro-differential equations (VO-V-PIDEs) is given. The suggested technique is built on the comb...
Saved in:
Published in: | Journal of applied mathematics & computing 2022-08, Vol.68 (4), p.2823-2855 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, an effective numerical technique for solving the variable order Fredholm–Volterra integro-differential equations (VO-FV-IDEs), systems of VO-FV-IDEs and variable order Volterra partial integro-differential equations (VO-V-PIDEs) is given. The suggested technique is built on the combination of the spectral collocation method with some types of operational matrices of the variable order fractional differentiation and integration of the shifted fractional Gegenbauer polynomials (SFGPs). The proposed technique reduces the considered problems to systems of algebraic equations that are straightforward to solve. The error bound estimation of using SFGPs is discussed. Finally, the suggested technique’s authenticity and efficacy are tested via presenting several numerical applications. Comparisons between the outcomes achieved by implementing the proposed method with other numerical methods in the existing literature are held, the obtained numerical results of these applications reveal the high precision and performance of the proposed method. |
---|---|
ISSN: | 1598-5865 1865-2085 |
DOI: | 10.1007/s12190-021-01640-8 |