Loading…

Efficient Knowledge Compilation Beyond Weighted Model Counting

Quantitative extensions of logic programming often require the solution of so called second level inference tasks, that is, problems that involve a third operation, such as maximization or normalization, on top of addition and multiplication, and thus go beyond the well-known weighted or algebraic m...

Full description

Saved in:
Bibliographic Details
Published in:Theory and practice of logic programming 2022-07, Vol.22 (4), p.505-522
Main Authors: KIESEL, RAFAEL, TOTIS, PIETRO, KIMMIG, ANGELIKA
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantitative extensions of logic programming often require the solution of so called second level inference tasks, that is, problems that involve a third operation, such as maximization or normalization, on top of addition and multiplication, and thus go beyond the well-known weighted or algebraic model counting setting of probabilistic logic programming under the distribution semantics. We introduce Second Level Algebraic Model Counting (2AMC) as a generic framework for these kinds of problems. As 2AMC is to (algebraic) model counting what forall-exists-SAT is to propositional satisfiability, it is notoriously hard to solve. First level techniques based on Knowledge Compilation (KC) have been adapted for specific 2AMC instances by imposing variable order constraints on the resulting circuit. However, those constraints can severely increase the circuit size and thus decrease the efficiency of such approaches. We show that we can exploit the logical structure of a 2AMC problem to omit parts of these constraints, thus limiting the negative effect. Furthermore, we introduce and implement a strategy to generate a sufficient set of constraints statically, with a priori guarantees for the performance of KC. Our empirical evaluation on several benchmarks and tasks confirms that our theoretical results can translate into more efficient solving in practice.
ISSN:1471-0684
1475-3081
DOI:10.1017/S147106842200014X