Loading…
Effects of Nitrogen-Doping or Alumina Films on Graphene as Anode Materials of Lithium-Ion Batteries Verified by In Situ XRD
First, graphene is directly grown on nickel foil without additional catalysts by chemical vapor deposition (CVD). Next, the graphene is modified by nitrogen-doping, and alumina is deposited onto the graphene by magnetron sputtering. The charge-specific capacity of N-doped graphene is higher than tha...
Saved in:
Published in: | Journal of nanomaterials 2022, Vol.2022 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | First, graphene is directly grown on nickel foil without additional catalysts by chemical vapor deposition (CVD). Next, the graphene is modified by nitrogen-doping, and alumina is deposited onto the graphene by magnetron sputtering. The charge-specific capacity of N-doped graphene is higher than that of graphene since 2 Theta of in situ XRD characteristic peaks for N-doped graphene moves toward a lower angle (about 24) which is smaller than that (about 25) for graphene, and then the gap between graphene layers for N-doped graphene is larger than that for graphene according to Bragg’s Law, and N-doped graphene demonstrates the additional in situ XRD characteristic peak (LiC6) in comparison to graphene only with the in situ XRD characteristic peak (LiC12). Furthermore, because 2 Theta of in situ XRD characteristic peaks for Al2O3/graphene also moves toward a lower angle (about 24) and Al2O3/graphene also shows the additional in situ XRD characteristic peak (LiC6), the charge-specific capacity of Al2O3/graphene is also higher than that of graphene. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2022/1758789 |