Loading…
A Mattila-Sjölin theorem for simplices in low dimensions
In this paper we show that if a compact set \(E \subset \mathbb{R}^d\), \(d \geq 3\), has Hausdorff dimension greater than \(\frac{(4k-1)}{4k}d+\frac{1}{4}\) when \(3 \leq d
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we show that if a compact set \(E \subset \mathbb{R}^d\), \(d \geq 3\), has Hausdorff dimension greater than \(\frac{(4k-1)}{4k}d+\frac{1}{4}\) when \(3 \leq d |
---|---|
ISSN: | 2331-8422 |