Loading…
A class of isochronous and non-isochronous nonlinear oscillators
In this work, we present a method of generating a class of nonlinear ordinary differential equations (ODEs), representing the dynamics of appropriate nonlinear oscillators, that have the characteristics of either amplitude independent frequency of oscillations or amplitude-dependent frequency of osc...
Saved in:
Published in: | The European physical journal. ST, Special topics Special topics, 2022-07, Vol.231 (11-12), p.2387-2399 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we present a method of generating a class of nonlinear ordinary differential equations (ODEs), representing the dynamics of appropriate nonlinear oscillators, that have the characteristics of either amplitude independent frequency of oscillations or amplitude-dependent frequency of oscillations from the integrals of the simple harmonic oscillator equation. To achieve this, we consider the case where the integrals are in the same form both for the linear and the nonlinear oscillators in either of the cases. We also discuss the method of deriving the associated integrals and the general solution in harmonic form for both the types. We demonstrate the applicability of this method up to 2
N
coupled first-order nonlinear ODEs in both the cases. Further, we illustrate the theory with an example in each case. |
---|---|
ISSN: | 1951-6355 1951-6401 |
DOI: | 10.1140/epjs/s11734-022-00484-y |