Loading…

Comparison between Regression Models, Support Vector Machine (SVM), and Artificial Neural Network (ANN) in River Water Quality Prediction

Both anthropogenic and natural sources of pollution are regionally significant. Therefore, in order to monitor and protect the quality of Langat River from deterioration, we use Artificial Intelligence (AI) to model the river water quality. This study has applied several machine learning models (two...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2022-08, Vol.10 (8), p.1652
Main Authors: Najwa Mohd Rizal, Nur, Hayder, Gasim, Mnzool, Mohammed, Elnaim, Bushra M. E., Mohammed, Adil Omer Yousif, Khayyat, Manal M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Both anthropogenic and natural sources of pollution are regionally significant. Therefore, in order to monitor and protect the quality of Langat River from deterioration, we use Artificial Intelligence (AI) to model the river water quality. This study has applied several machine learning models (two support vector machines (SVMs), six regression models, and artificial neural network (ANN)) to predict total suspended solids (TSS), total solids (TS), and dissolved solids (DS)) in Langat River, Malaysia. All of the models have been assessed using root mean square error (RMSE), mean square error (MSE) as well as the determination of coefficient (R2). Based on the model performance metrics, the ANN model outperformed all models, while the GPR and SVM models exhibited the characteristic of over-fitting. The remaining machine learning models exhibited fair to poor performances. Although there are a few researches conducted to predict TDS using ANN, however, there are less to no research conducted to predict TS and TSS in Langat River. Therefore, this is the first study to evaluate the water quality (TSS, TS, and DS) of Langat River using the aforementioned models (especially SVM and the six regression models).
ISSN:2227-9717
2227-9717
DOI:10.3390/pr10081652