Loading…

Generalized Volterra‐type operators on generalized Fock spaces

Let φ and g be entire functions on the complex plane C$\mathbb {C}$. The generalized Volterra‐type operators Cφg$C_\varphi ^g$ and Tφg$T_\varphi ^g$ induced by φ and g are defined by Cφgf(z)=∫0zf′(φ(ζ))g(ζ)dζ\begin{equation*} \hspace*{104pt}C_\varphi ^g f(z)=\int _0^z f^{\prime }(\varphi (\zeta ))g(...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Nachrichten 2022-08, Vol.295 (8), p.1641-1662
Main Authors: Yang, Zi‐cong, Zhou, Ze‐hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let φ and g be entire functions on the complex plane C$\mathbb {C}$. The generalized Volterra‐type operators Cφg$C_\varphi ^g$ and Tφg$T_\varphi ^g$ induced by φ and g are defined by Cφgf(z)=∫0zf′(φ(ζ))g(ζ)dζ\begin{equation*} \hspace*{104pt}C_\varphi ^g f(z)=\int _0^z f^{\prime }(\varphi (\zeta ))g(\zeta )\,d\zeta \end{equation*}and Tφgf(z)=∫0zf(φ(ζ))g(ζ)dζ,\begin{equation*} \hspace*{105pt}T_\varphi ^g f(z)=\int _0^z f(\varphi (\zeta ))g(\zeta )\,d\zeta , \end{equation*}where f is an entire function and z∈C$z\in \mathbb {C}$. In this paper, we characterize the boundedness and compactness of the generalized Volterra‐type operators Cφg$C_\varphi ^g$ and Tφg$T_\varphi ^g$ acting between the generalized Fock spaces Fpϕ$\mathcal {F}_p^\phi$, induced by smooth radial weights ϕ that decay faster than the classical Gaussian ones. In addition, we obtain a upper pointwise estimate for the Bergman kernel for F2ϕ$\mathcal {F}_2^\phi$.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.202000014