Loading…
Analytic solution of the exact Daum-Huang flow equation for particle filters
State estimation for nonlinear systems, especially in high dimensions, is a generally intractable problem, despite the ever-increasing computing power. Efficient algorithms usually apply a finite-dimensional model for approximating the probability density of the state vector or treat the estimation...
Saved in:
Published in: | arXiv.org 2022-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | State estimation for nonlinear systems, especially in high dimensions, is a generally intractable problem, despite the ever-increasing computing power. Efficient algorithms usually apply a finite-dimensional model for approximating the probability density of the state vector or treat the estimation problem numerically. In 2007 Daum and Huang introduced a novel particle filter approach that uses a homotopy-induced particle flow for the Bayesian update step. Multiple types of particle flows were derived since with different properties. The exact flow considered in this work is a first-order linear ordinary time-varying inhomogeneous differential equation for the particle motion. An analytic solution in the interval [0,1] is derived for the scalar measurement case, which enables significantly faster computation of the Bayesian update step for particle filters. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2209.00089 |