Loading…
Propagation of Singularities for Subelliptic Wave Equations
Hörmander’s propagation of singularities theorem does not fully describe the propagation of singularities in subelliptic wave equations, due to the existence of doubly characteristic points. In the present work, building upon a visionary conference paper by Melrose (in: Hyperbolic equations and rela...
Saved in:
Published in: | Communications in mathematical physics 2022-10, Vol.395 (1), p.143-178 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hörmander’s propagation of singularities theorem does not fully describe the propagation of singularities in subelliptic wave equations, due to the existence of doubly characteristic points. In the present work, building upon a visionary conference paper by Melrose (in: Hyperbolic equations and related topics, Academic Press, pp 181–192, 1986), we prove that singularities of subelliptic wave equations only propagate along null-bicharacteristics and abnormal extremals, which are well-known curves in optimal control theory. As a consequence, we characterize the singular support of subelliptic wave kernels outside the diagonal. These results show that abnormal extremals play an important role in the classical-quantum correspondence between sub-Riemannian geometry and sub-Laplacians. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-022-04415-9 |