Loading…
Self-healing of Trotter error in digital adiabatic state preparation
Adiabatic time evolution can be used to prepare a complicated quantum many-body state from one that is easier to synthesize and Trotterization can be used to implement such an evolution digitally. The complex interplay between non-adiabaticity and digitization influences the infidelity of this proce...
Saved in:
Published in: | arXiv.org 2023-08 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adiabatic time evolution can be used to prepare a complicated quantum many-body state from one that is easier to synthesize and Trotterization can be used to implement such an evolution digitally. The complex interplay between non-adiabaticity and digitization influences the infidelity of this process. We prove that the first-order Trotterization of a complete adiabatic evolution has a cumulative infidelity that scales as \(\mathcal O(T^{-2} \delta t^2)\) instead of \(\mathcal O(T^2 \delta t^2)\) expected from general Trotter error bounds, where \(\delta t\) is the time step and \(T\) is the total time. This result suggests a self-healing mechanism and explains why, despite increasing \(T\), infidelities for fixed-\(\delta t\) digitized evolutions still decrease for a wide variety of Hamiltonians. It also establishes a correspondence between the Quantum Approximate Optimization Algorithm (QAOA) and digitized quantum annealing. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2209.06242 |