Loading…
Self-healing of Trotter error in digital adiabatic state preparation
Adiabatic time evolution can be used to prepare a complicated quantum many-body state from one that is easier to synthesize and Trotterization can be used to implement such an evolution digitally. The complex interplay between non-adiabaticity and digitization influences the infidelity of this proce...
Saved in:
Published in: | arXiv.org 2023-08 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kovalsky, Lucas K Calderon-Vargas, Fernando A Grace, Matthew D Magann, Alicia B Larsen, James B Baczewski, Andrew D Mohan Sarovar |
description | Adiabatic time evolution can be used to prepare a complicated quantum many-body state from one that is easier to synthesize and Trotterization can be used to implement such an evolution digitally. The complex interplay between non-adiabaticity and digitization influences the infidelity of this process. We prove that the first-order Trotterization of a complete adiabatic evolution has a cumulative infidelity that scales as \(\mathcal O(T^{-2} \delta t^2)\) instead of \(\mathcal O(T^2 \delta t^2)\) expected from general Trotter error bounds, where \(\delta t\) is the time step and \(T\) is the total time. This result suggests a self-healing mechanism and explains why, despite increasing \(T\), infidelities for fixed-\(\delta t\) digitized evolutions still decrease for a wide variety of Hamiltonians. It also establishes a correspondence between the Quantum Approximate Optimization Algorithm (QAOA) and digitized quantum annealing. |
doi_str_mv | 10.48550/arxiv.2209.06242 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2714531183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714531183</sourcerecordid><originalsourceid>FETCH-LOGICAL-a952-29bde5a21d0a91da082fa8ba8cb1ade1b8a76e8757b1511593c640b71e60b8cf3</originalsourceid><addsrcrecordid>eNotjctqwzAQAEWh0JDmA3oT9GxXu7Js-VjSVyDQQ30PK2udKhjLlZXSz2-gPQ3MYUaIO1BlZY1RD5R-wneJqNpS1VjhlVih1lDYCvFGbJblpJTCukFj9Eo8ffA4FJ9MY5iOMg6ySzFnTpJTikmGSfpwDJlGST6Qoxx6uWTKLOfEM6WLiNOtuB5oXHjzz7XoXp677Vuxf3_dbR_3BbUGC2ydZ0MIXlELnpTFgawj2zsgz-AsNTXbxjQODIBpdV9XyjXAtXK2H_Ra3P9l5xS_zrzkwyme03Q5HrCBymgAq_Uv8m9MoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714531183</pqid></control><display><type>article</type><title>Self-healing of Trotter error in digital adiabatic state preparation</title><source>Publicly Available Content (ProQuest)</source><creator>Kovalsky, Lucas K ; Calderon-Vargas, Fernando A ; Grace, Matthew D ; Magann, Alicia B ; Larsen, James B ; Baczewski, Andrew D ; Mohan Sarovar</creator><creatorcontrib>Kovalsky, Lucas K ; Calderon-Vargas, Fernando A ; Grace, Matthew D ; Magann, Alicia B ; Larsen, James B ; Baczewski, Andrew D ; Mohan Sarovar</creatorcontrib><description>Adiabatic time evolution can be used to prepare a complicated quantum many-body state from one that is easier to synthesize and Trotterization can be used to implement such an evolution digitally. The complex interplay between non-adiabaticity and digitization influences the infidelity of this process. We prove that the first-order Trotterization of a complete adiabatic evolution has a cumulative infidelity that scales as \(\mathcal O(T^{-2} \delta t^2)\) instead of \(\mathcal O(T^2 \delta t^2)\) expected from general Trotter error bounds, where \(\delta t\) is the time step and \(T\) is the total time. This result suggests a self-healing mechanism and explains why, despite increasing \(T\), infidelities for fixed-\(\delta t\) digitized evolutions still decrease for a wide variety of Hamiltonians. It also establishes a correspondence between the Quantum Approximate Optimization Algorithm (QAOA) and digitized quantum annealing.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2209.06242</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adiabatic flow ; Algorithms ; Digitization ; Evolution ; Optimization</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2714531183?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Kovalsky, Lucas K</creatorcontrib><creatorcontrib>Calderon-Vargas, Fernando A</creatorcontrib><creatorcontrib>Grace, Matthew D</creatorcontrib><creatorcontrib>Magann, Alicia B</creatorcontrib><creatorcontrib>Larsen, James B</creatorcontrib><creatorcontrib>Baczewski, Andrew D</creatorcontrib><creatorcontrib>Mohan Sarovar</creatorcontrib><title>Self-healing of Trotter error in digital adiabatic state preparation</title><title>arXiv.org</title><description>Adiabatic time evolution can be used to prepare a complicated quantum many-body state from one that is easier to synthesize and Trotterization can be used to implement such an evolution digitally. The complex interplay between non-adiabaticity and digitization influences the infidelity of this process. We prove that the first-order Trotterization of a complete adiabatic evolution has a cumulative infidelity that scales as \(\mathcal O(T^{-2} \delta t^2)\) instead of \(\mathcal O(T^2 \delta t^2)\) expected from general Trotter error bounds, where \(\delta t\) is the time step and \(T\) is the total time. This result suggests a self-healing mechanism and explains why, despite increasing \(T\), infidelities for fixed-\(\delta t\) digitized evolutions still decrease for a wide variety of Hamiltonians. It also establishes a correspondence between the Quantum Approximate Optimization Algorithm (QAOA) and digitized quantum annealing.</description><subject>Adiabatic flow</subject><subject>Algorithms</subject><subject>Digitization</subject><subject>Evolution</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctqwzAQAEWh0JDmA3oT9GxXu7Js-VjSVyDQQ30PK2udKhjLlZXSz2-gPQ3MYUaIO1BlZY1RD5R-wneJqNpS1VjhlVih1lDYCvFGbJblpJTCukFj9Eo8ffA4FJ9MY5iOMg6ySzFnTpJTikmGSfpwDJlGST6Qoxx6uWTKLOfEM6WLiNOtuB5oXHjzz7XoXp677Vuxf3_dbR_3BbUGC2ydZ0MIXlELnpTFgawj2zsgz-AsNTXbxjQODIBpdV9XyjXAtXK2H_Ra3P9l5xS_zrzkwyme03Q5HrCBymgAq_Uv8m9MoQ</recordid><startdate>20230810</startdate><enddate>20230810</enddate><creator>Kovalsky, Lucas K</creator><creator>Calderon-Vargas, Fernando A</creator><creator>Grace, Matthew D</creator><creator>Magann, Alicia B</creator><creator>Larsen, James B</creator><creator>Baczewski, Andrew D</creator><creator>Mohan Sarovar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230810</creationdate><title>Self-healing of Trotter error in digital adiabatic state preparation</title><author>Kovalsky, Lucas K ; Calderon-Vargas, Fernando A ; Grace, Matthew D ; Magann, Alicia B ; Larsen, James B ; Baczewski, Andrew D ; Mohan Sarovar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a952-29bde5a21d0a91da082fa8ba8cb1ade1b8a76e8757b1511593c640b71e60b8cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adiabatic flow</topic><topic>Algorithms</topic><topic>Digitization</topic><topic>Evolution</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Kovalsky, Lucas K</creatorcontrib><creatorcontrib>Calderon-Vargas, Fernando A</creatorcontrib><creatorcontrib>Grace, Matthew D</creatorcontrib><creatorcontrib>Magann, Alicia B</creatorcontrib><creatorcontrib>Larsen, James B</creatorcontrib><creatorcontrib>Baczewski, Andrew D</creatorcontrib><creatorcontrib>Mohan Sarovar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovalsky, Lucas K</au><au>Calderon-Vargas, Fernando A</au><au>Grace, Matthew D</au><au>Magann, Alicia B</au><au>Larsen, James B</au><au>Baczewski, Andrew D</au><au>Mohan Sarovar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-healing of Trotter error in digital adiabatic state preparation</atitle><jtitle>arXiv.org</jtitle><date>2023-08-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Adiabatic time evolution can be used to prepare a complicated quantum many-body state from one that is easier to synthesize and Trotterization can be used to implement such an evolution digitally. The complex interplay between non-adiabaticity and digitization influences the infidelity of this process. We prove that the first-order Trotterization of a complete adiabatic evolution has a cumulative infidelity that scales as \(\mathcal O(T^{-2} \delta t^2)\) instead of \(\mathcal O(T^2 \delta t^2)\) expected from general Trotter error bounds, where \(\delta t\) is the time step and \(T\) is the total time. This result suggests a self-healing mechanism and explains why, despite increasing \(T\), infidelities for fixed-\(\delta t\) digitized evolutions still decrease for a wide variety of Hamiltonians. It also establishes a correspondence between the Quantum Approximate Optimization Algorithm (QAOA) and digitized quantum annealing.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2209.06242</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2714531183 |
source | Publicly Available Content (ProQuest) |
subjects | Adiabatic flow Algorithms Digitization Evolution Optimization |
title | Self-healing of Trotter error in digital adiabatic state preparation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-healing%20of%20Trotter%20error%20in%20digital%20adiabatic%20state%20preparation&rft.jtitle=arXiv.org&rft.au=Kovalsky,%20Lucas%20K&rft.date=2023-08-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2209.06242&rft_dat=%3Cproquest%3E2714531183%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a952-29bde5a21d0a91da082fa8ba8cb1ade1b8a76e8757b1511593c640b71e60b8cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714531183&rft_id=info:pmid/&rfr_iscdi=true |