Loading…
Hausdorff and packing dimensions and measures for nonlinear transversally non-conformal thin solenoids
We extend the results of Hasselblatt and Schmeling [Dimension product structure of hyperbolic sets. Modern Dynamical Systems and Applications. Eds. B. Hasselblatt, M. Brin and Y. Pesin. Cambridge University Press, New York, 2004, pp. 331–345] and of Rams and Simon [Hausdorff and packing measure for...
Saved in:
Published in: | Ergodic theory and dynamical systems 2022-11, Vol.42 (11), p.3458-3489 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We extend the results of Hasselblatt and Schmeling [Dimension product structure of hyperbolic sets. Modern Dynamical Systems and Applications. Eds. B. Hasselblatt, M. Brin and Y. Pesin. Cambridge University Press, New York, 2004, pp. 331–345] and of Rams and Simon [Hausdorff and packing measure for solenoids. Ergod. Th. & Dynam. Sys. 23 (2003), 273–292] for
$C^{1+\varepsilon }$
hyperbolic, (partially) linear solenoids
$\Lambda $
over the circle embedded in
$\mathbb {R}^3$
non-conformally attracting in the stable discs
$W^s$
direction, to nonlinear solenoids. Under the assumptions of transversality and on the Lyapunov exponents for an appropriate Gibbs measure imposing thinness, as well as the assumption that there is an invariant
$C^{1+\varepsilon }$
strong stable foliation, we prove that Hausdorff dimension
$\operatorname {\mathrm {HD}}(\Lambda \cap W^s)$
is the same quantity
$t_0$
for all
$W^s$
and else
$\mathrm {HD}(\Lambda )=t_0+1$
. We prove also that for the packing measure,
$0 |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2021.94 |