Loading…

Modeling on Energy-Efficiency Computation Offloading Using Probabilistic Action Generating

Wireless-powered mobile-edge computing (MEC) emerges as a crucial component in the Internet of Things (IoTs). It can cope with the fundamental performance limitations of low-power networks, such as wireless sensor networks or mobile networks. Although computation offloading and resource allocation i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2022-10, Vol.9 (20), p.20681-20692
Main Authors: Wang, Cong, Lu, Weicheng, Peng, Sancheng, Qu, Youyang, Wang, Guojun, Yu, Shui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wireless-powered mobile-edge computing (MEC) emerges as a crucial component in the Internet of Things (IoTs). It can cope with the fundamental performance limitations of low-power networks, such as wireless sensor networks or mobile networks. Although computation offloading and resource allocation in MEC have been studied with different optimization objectives, performance optimization in larger-scale systems still needs to be further improved. More importantly, energy efficiency is also a key issue as well as computation offloading and resource allocation for wireless-powered MEC. In this article, we investigate the joint optimization of computation rate and energy consumption under limited resources, and propose an online offloading model to search for the asymptotically optimal offloading and resource allocation strategy. First, the joint optimization problem is modeled as a mixed integer programming (MIP) problem. Second, a deep reinforcement learning (DRL)-based method, energy efficiency computation offloading using probabilistic action generating (ECOPG), is designed to generate the joint optimization policy for computation offloading and resource allocation. Finally, to avoid the curse of dimensionality in large network scales, an action exploration mechanism based on probability is introduced to accelerate the convergence rate by targeted sampling and dynamic experience replay. The experimental results demonstrate that the proposed methods significantly outperform other DRL-based methods in energy consumption, and gain better computation rate and execution efficiency at the same time. With the expansion of the network scale, the improvements become more apparent.
ISSN:2327-4662
2327-4662
DOI:10.1109/JIOT.2022.3175760