Loading…

Novel event‐triggered distributed state estimation algorithm for nonlinear systems over wireless sensor networks

This article focuses on the event‐triggered distributed state estimation for nonlinear dynamic systems over wireless sensor networks, where whether measurement should be transmitted from the sensor to the corresponding local estimator depends on a predesigned event‐triggered mechanism. To obtain a b...

Full description

Saved in:
Bibliographic Details
Published in:International journal of robust and nonlinear control 2022-11, Vol.32 (17), p.9078-9098
Main Authors: Shi, Lihong, Yang, Feng, Zheng, Litao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article focuses on the event‐triggered distributed state estimation for nonlinear dynamic systems over wireless sensor networks, where whether measurement should be transmitted from the sensor to the corresponding local estimator depends on a predesigned event‐triggered mechanism. To obtain a better estimation performance while saving the communication energy consumption, a novel event‐triggered nonlinear state estimator is designed by approximating the true posterior probability density function with minimum Kullback–Leibler divergence when the measurement is not transmitted. After local estimation results are produced in every local estimator through applying the cubature rule, according to a communication protocol and covariance intersection fusion strategy, an event‐triggered distributed cubature Kalman filtering (EDCKF) algorithm is developed. Compared with algorithms based on weighted average consensus, the proposed algorithm eliminates the disagreement between local estimators and obtains its best performance within a limited time. Moreover, sufficient conditions are obtained to prove the stability of the EDCKF algorithm. Simulation results are provided to demonstrate the effectiveness and superiority of the proposed estimator and algorithm.
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.6321