Loading…
Meta-Principled Family of Hyperparameter Scaling Strategies
In this note, we first derive a one-parameter family of hyperparameter scaling strategies that interpolates between the neural-tangent scaling and mean-field/maximal-update scaling. We then calculate the scalings of dynamical observables -- network outputs, neural tangent kernels, and differentials...
Saved in:
Published in: | arXiv.org 2022-10 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this note, we first derive a one-parameter family of hyperparameter scaling strategies that interpolates between the neural-tangent scaling and mean-field/maximal-update scaling. We then calculate the scalings of dynamical observables -- network outputs, neural tangent kernels, and differentials of neural tangent kernels -- for wide and deep neural networks. These calculations in turn reveal a proper way to scale depth with width such that resultant large-scale models maintain their representation-learning ability. Finally, we observe that various infinite-width limits examined in the literature correspond to the distinct corners of the interconnected web spanned by effective theories for finite-width neural networks, with their training dynamics ranging from being weakly-coupled to being strongly-coupled. |
---|---|
ISSN: | 2331-8422 |