Loading…
Assessment of the Effects of COVID-19 Pandemic Stay-at-Home Measures on Potable Water Consumption Patterns, Location, and Financial Impacts for Water Utilities in Colombian Cities
Several studies suggest that social distancing measures due to the COVID-19 pandemic have affected the water sector, specifically regarding its demand and supply. Given the importance of hygiene practices, this effect is heightened by the role that potable water availability has in tackling the spre...
Saved in:
Published in: | Water (Basel) 2022-10, Vol.14 (19), p.3004 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Several studies suggest that social distancing measures due to the COVID-19 pandemic have affected the water sector, specifically regarding its demand and supply. Given the importance of hygiene practices, this effect is heightened by the role that potable water availability has in tackling the spread of the virus. This study aimed to assess the impact of the pandemic on the water consumption patterns and location in four Colombian cities known for their important commercial, industrial, academic, and touristic features. Results exhibit diverse diminishing water consumption trends alongside COVID-19 because of different attributes of the cities (e.g., size, environmental, socioeconomic, and sociocultural characteristics). For instance, the touristic case study has been the most affected because of travel restrictions, with an average commercial demand drop of 32%. In contrast, industrial case studies have had a rapid recovery in water demand, with average industrial drops of 11–14% compared to 20–25% in non-industrial cities. These water demand changes do not affect only the operation of water utilities, but also their finances. Economic losses were estimated at 3.7%, 2.4%, and 6.4% of the expected incomes for the first 14 months of the pandemic for the case studies in this paper. Under a changing environment, understanding these changes and challenges is fundamental for ensuring that water systems are resilient in any unexpected situation. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w14193004 |