Loading…
Low energy scattering asymptotics for planar obstacles
We compute low energy asymptotics for the resolvent of a planar obstacle, and deduce asymptotics for the corresponding scattering matrix, scattering phase, and exterior Dirichlet-to-Neumann operator. We use an identity of Vodev to relate the obstacle resolvent to the free resolvent and an identity o...
Saved in:
Published in: | arXiv.org 2023-02 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We compute low energy asymptotics for the resolvent of a planar obstacle, and deduce asymptotics for the corresponding scattering matrix, scattering phase, and exterior Dirichlet-to-Neumann operator. We use an identity of Vodev to relate the obstacle resolvent to the free resolvent and an identity of Petkov and Zworski to relate the scattering matrix to the resolvent. The leading singularities are given in terms of the obstacle's logarithmic capacity or Robin constant. We expect these results to hold for more general compactly supported perturbations of the Laplacian on \(\mathbb R^2\), with the definition of the Robin constant suitably modified, under a generic assumption that the spectrum is regular at zero. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2210.05744 |