Loading…
On the regularity of conical Calabi-Yau potentials
Using pluripotential theory on degenerate Sasakian manifolds, we show that a locally bounded conical Calabi-Yau potential on a Fano cone is actually smooth on the regular locus. This work is motivated by a similar result obtained by R. Berman in the case where the cone is toric. Our proof is purely...
Saved in:
Published in: | arXiv.org 2023-05 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using pluripotential theory on degenerate Sasakian manifolds, we show that a locally bounded conical Calabi-Yau potential on a Fano cone is actually smooth on the regular locus. This work is motivated by a similar result obtained by R. Berman in the case where the cone is toric. Our proof is purely pluripotential and independent of any extra symmetry imposed on the cone. |
---|---|
ISSN: | 2331-8422 |