Loading…
Semi-reproducing kernel Hilbert spaces, splines and increment kriging on the sphere
The concept of reproducing kernel Hilbert space does not capture the key features of the spherical smoothing problem. A semi- reproducing kernel Hilbert space (SRKHS), provides a more natural setting for the smoothing spline solution. In this paper, we carry over the concept of the SRKHS from the R...
Saved in:
Published in: | Stochastic environmental research and risk assessment 2022-11, Vol.36 (11), p.3639-3652 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The concept of reproducing kernel Hilbert space does not capture the key features of the spherical smoothing problem. A semi- reproducing kernel Hilbert space (SRKHS), provides a more natural setting for the smoothing spline solution. In this paper, we carry over the concept of the SRKHS from the
R
d
to the sphere,
S
d
-
1
. In addition, a systematic study is made of the properties of an spherical SRKHS. Next, we present the one to one correspondence between increment-reproducing kernels and conditionally positive definite functions and its consequences on spherical optimal smoothing. The smoothing and interpolation issues on the sphere are considered in the proposed SRKHS setting. Finally, a simulation study is done to illustrate the proposed methodology and an analysis of world average temperature from 1963 to 1967 and 1993–1997 is done using the proposed methods. |
---|---|
ISSN: | 1436-3240 1436-3259 |
DOI: | 10.1007/s00477-022-02217-y |