Loading…
Quasi-Stabilization Control of Quaternion-Valued Fractional-Order Memristive Neural Networks
This paper focuses on the quasi-stabilization of the quaternion-valued fractional-order memristive neural networks. Based on the contraction mapping theory, a sufficient condition is derived to ensure the existence of the equilibrium point for the memristive neural networks. Subsequently, by means o...
Saved in:
Published in: | Circuits, systems, and signal processing systems, and signal processing, 2022-12, Vol.41 (12), p.6733-6749 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper focuses on the quasi-stabilization of the quaternion-valued fractional-order memristive neural networks. Based on the contraction mapping theory, a sufficient condition is derived to ensure the existence of the equilibrium point for the memristive neural networks. Subsequently, by means of Lyapunov functional and fractional Laplace transform, a algebraic inequality-based condition is developed to guarantee the quasi-stability of the equilibrium point. In addition, a related question is whether the convex closure proposed by the quaternion parameters is meaningful, to overcome this issues, a vector ordering approach is proposed, which can be used to compare the “magnitude” of two different quaternions. Finally, the corresponding simulation results are included to show the effectiveness of the proposed methodology derived in this paper. |
---|---|
ISSN: | 0278-081X 1531-5878 |
DOI: | 10.1007/s00034-022-02105-4 |