Loading…
Stabilization of a nonlinear Euler–Bernoulli beam
In this work, we study the vibration control of a flexible mechanical system. The dynamic of the problem is modeled as a viscoelastic nonlinear Euler–Bernoulli beam. To suppress the undesirable transversal vibrations of the beam, we adopt a control at the right boundary of the beam. This control law...
Saved in:
Published in: | Arabian journal of mathematics 2022-12, Vol.11 (3), p.479-496 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we study the vibration control of a flexible mechanical system. The dynamic of the problem is modeled as a viscoelastic nonlinear Euler–Bernoulli beam. To suppress the undesirable transversal vibrations of the beam, we adopt a control at the right boundary of the beam. This control law is simple to implement. We prove uniform stability of the system using a viscoelastic material, the multiplier method and some ideas introduced in [20]. It is shown that a large range of rates of decay of the energy can be achieved through a determined class of kernels. Unlike most of the existing classes in the market, ours are not necessarily strictly decreasing. |
---|---|
ISSN: | 2193-5343 2193-5351 2193-5351 |
DOI: | 10.1007/s40065-022-00368-y |