Loading…
An Approach to Improving Homogeneous Cross-Project Defect Prediction by Jensen-Shannon Divergence and Relative Density
Homogeneous cross-project defect prediction (HCPDP) aims to apply a binary classification model built on source projects to a target project with the same metrics. However, there is still room for improvement in the performance of the existing HCPDP models. This study has proposed a novel approach,...
Saved in:
Published in: | Scientific programming 2022-10, Vol.2022, p.1-16 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Homogeneous cross-project defect prediction (HCPDP) aims to apply a binary classification model built on source projects to a target project with the same metrics. However, there is still room for improvement in the performance of the existing HCPDP models. This study has proposed a novel approach, including one-to-one and many-to-one predictions. First, we apply the Jensen-Shannon divergence to select the most similar source project automatically. Second, relative density estimation is introduced to choose the suitable instance of the selected source project. Third, one-to-one and many-to-one prediction models are trained by the selected instances. Finally, two benchmark datasets are used to evaluate the proposed approach. Compared to the state-of-the-art methods, the experimental results demonstrated that the proposed approach could improve the prediction performance in the F1-score, AUC, and G-mean metrics and exhibit strong adaptability to the traditional classifiers. |
---|---|
ISSN: | 1058-9244 1875-919X |
DOI: | 10.1155/2022/4648468 |