Loading…

An OSSS-type inequality for uniformly drawn subsets of fixed size

The OSSS inequality [O'Donnell, Saks, Schramm and Servedio, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05), Pittsburgh (2005)] gives an upper bound for the variance of a function f of independent 0-1 valued random variables, in terms of the influences of these rand...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-06
Main Authors: van den Berg, Jacob, Henk, Don
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The OSSS inequality [O'Donnell, Saks, Schramm and Servedio, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05), Pittsburgh (2005)] gives an upper bound for the variance of a function f of independent 0-1 valued random variables, in terms of the influences of these random variables and the computational complexity of a (randomised) algorithm for determining the value of f. Duminil-Copin, Raoufi and Tassion [Annals of Mathematics 189, 75-99 (2019)] obtained a generalization to monotonic measures and used it to prove new results for Potts models and random-cluster models. Their generalization of the OSSS inequality raises the question if there are still other measures for which a version of that inequality holds. We derive a version of the OSSS inequality for a family of measures that are far from monotonic, namely the k-out-of-n measures (these measures correspond with drawing k elements from a set of size n uniformly). We illustrate the inequality by studying the event that there is an occupied horizontal crossing of an R times R box on the triangular lattice in the site percolation model where exactly half of the vertices in the box are occupied.
ISSN:2331-8422