Loading…
An OSSS-type inequality for uniformly drawn subsets of fixed size
The OSSS inequality [O'Donnell, Saks, Schramm and Servedio, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05), Pittsburgh (2005)] gives an upper bound for the variance of a function f of independent 0-1 valued random variables, in terms of the influences of these rand...
Saved in:
Published in: | arXiv.org 2024-06 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The OSSS inequality [O'Donnell, Saks, Schramm and Servedio, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05), Pittsburgh (2005)] gives an upper bound for the variance of a function f of independent 0-1 valued random variables, in terms of the influences of these random variables and the computational complexity of a (randomised) algorithm for determining the value of f. Duminil-Copin, Raoufi and Tassion [Annals of Mathematics 189, 75-99 (2019)] obtained a generalization to monotonic measures and used it to prove new results for Potts models and random-cluster models. Their generalization of the OSSS inequality raises the question if there are still other measures for which a version of that inequality holds. We derive a version of the OSSS inequality for a family of measures that are far from monotonic, namely the k-out-of-n measures (these measures correspond with drawing k elements from a set of size n uniformly). We illustrate the inequality by studying the event that there is an occupied horizontal crossing of an R times R box on the triangular lattice in the site percolation model where exactly half of the vertices in the box are occupied. |
---|---|
ISSN: | 2331-8422 |