Loading…

STARLIKENESS AND CONVEXITY OF CAUCHY TRANSFORMS ON REGULAR POLYGONS

For $n\geq 3$ , let $Q_n\subset \mathbb {C}$ be an arbitrary regular n-sided polygon. We prove that the Cauchy transform $F_{Q_n}$ of the normalised two-dimensional Lebesgue measure on $Q_n$ is univalent and starlike but not convex in $\widehat {\mathbb {C}}\setminus Q_n$ .

Saved in:
Bibliographic Details
Published in:Bulletin of the Australian Mathematical Society 2021-04, Vol.103 (2), p.291-302
Main Authors: ZHANG, PENG-FEI, DONG, XIN-HAN
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For $n\geq 3$ , let $Q_n\subset \mathbb {C}$ be an arbitrary regular n-sided polygon. We prove that the Cauchy transform $F_{Q_n}$ of the normalised two-dimensional Lebesgue measure on $Q_n$ is univalent and starlike but not convex in $\widehat {\mathbb {C}}\setminus Q_n$ .
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972720000696