Loading…
STARLIKENESS AND CONVEXITY OF CAUCHY TRANSFORMS ON REGULAR POLYGONS
For $n\geq 3$ , let $Q_n\subset \mathbb {C}$ be an arbitrary regular n-sided polygon. We prove that the Cauchy transform $F_{Q_n}$ of the normalised two-dimensional Lebesgue measure on $Q_n$ is univalent and starlike but not convex in $\widehat {\mathbb {C}}\setminus Q_n$ .
Saved in:
Published in: | Bulletin of the Australian Mathematical Society 2021-04, Vol.103 (2), p.291-302 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For
$n\geq 3$
, let
$Q_n\subset \mathbb {C}$
be an arbitrary regular n-sided polygon. We prove that the Cauchy transform
$F_{Q_n}$
of the normalised two-dimensional Lebesgue measure on
$Q_n$
is univalent and starlike but not convex in
$\widehat {\mathbb {C}}\setminus Q_n$
. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972720000696 |