Loading…
AN OPTIMAL LINEAR FILTER FOR ESTIMATION OF RANDOM FUNCTIONS IN HILBERT SPACE
Let $\boldsymbol{f}$ be a square-integrable, zero-mean, random vector with observable realizations in a Hilbert space H, and let $\boldsymbol{g}$ be an associated square-integrable, zero-mean, random vector with realizations which are not observable in a Hilbert space K. We seek an optimal filter in...
Saved in:
Published in: | The ANZIAM journal 2020-07, Vol.62 (3), p.274-301 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
$\boldsymbol{f}$
be a square-integrable, zero-mean, random vector with observable realizations in a Hilbert space H, and let
$\boldsymbol{g}$
be an associated square-integrable, zero-mean, random vector with realizations which are not observable in a Hilbert space K. We seek an optimal filter in the form of a closed linear operator X acting on the observable realizations of a proximate vector
$\boldsymbol{f}_{\epsilon } \approx \boldsymbol{f}$
that provides the best estimate
$\widehat{\boldsymbol{g}}_{\epsilon} = X \boldsymbol{f}_{\epsilon}$
of the vector
$\boldsymbol{g}$
. We assume the required covariance operators are known. The results are illustrated with a typical example. |
---|---|
ISSN: | 1446-1811 1446-8735 |
DOI: | 10.1017/S1446181120000188 |