Loading…

MUCHNIK DEGREES AND CARDINAL CHARACTERISTICS

A mass problem is a set of functions $\omega \to \omega $ . For mass problems ${\mathcal {C}}, {\mathcal {D}}$ , one says that ${\mathcal {C}}$ is Muchnik reducible to ${\mathcal {D}}$ if each function in ${\mathcal {C}}$ is computed by a function in ${\mathcal {D}}$ . In this paper we study some hi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of symbolic logic 2021-06, Vol.86 (2), p.471-498
Main Authors: MONIN, BENOIT, NIES, ANDRÉ
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A mass problem is a set of functions $\omega \to \omega $ . For mass problems ${\mathcal {C}}, {\mathcal {D}}$ , one says that ${\mathcal {C}}$ is Muchnik reducible to ${\mathcal {D}}$ if each function in ${\mathcal {C}}$ is computed by a function in ${\mathcal {D}}$ . In this paper we study some highness properties of Turing oracles, which we view as mass problems. We compare them with respect to Muchnik reducibility and its uniform strengthening, Medvedev reducibility. For $p \in [0,1]$ let ${\mathcal {D}}(p)$ be the mass problem of infinite bit sequences y (i.e., $\{0,1\}$ -valued functions) such that for each computable bit sequence x , the bit sequence $ x {\,\leftrightarrow\,} y$ has asymptotic lower density at most p (where $x {\,\leftrightarrow\,} y$ has a $1$ in position n iff $x(n) = y(n)$ ). We show that all members of this family of mass problems parameterized by a real p with $0 < p p$ for each computable set x . We prove that the Medvedev (and hence Muchnik) complexity of the mass problems ${\mathcal {B}}(p)$ is the same for all $p \in (0, 1/2)$ , by showing that they are Medvedev equivalent to the mass problem of functions bounded by ${2^{2}}^{n}$ that are almost everywhere different from each computable function. Next, together with Joseph Miller, we obtain a proper hierarchy of the mass problems of type $\text {IOE}$ : we show that for any order function g there exists a faster growing order function $h $ such that $\text {IOE}(h)$ is strictly above $\text {IOE}(g)$ in the sense of Muchnik reducibility. We study cardinal characteristics in the sense of set theory that are analogous to the highness properties above. For instance, ${\mathfrak {d}} (p)$ is the least size of a set G of bit sequences such t
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2020.1