Loading…
Effective equidistribution for generalized higher-step nilflows
In this paper we prove bounds for ergodic averages for nilflows on general higher-step nilmanifolds. Under Diophantine condition on the frequency of a toral projection of the flow, we prove that almost all orbits become equidistributed at polynomial speed. We analyze the rate of decay which is deter...
Saved in:
Published in: | Ergodic theory and dynamical systems 2022-12, Vol.42 (12), p.3656-3715 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we prove bounds for ergodic averages for nilflows on general higher-step nilmanifolds. Under Diophantine condition on the frequency of a toral projection of the flow, we prove that almost all orbits become equidistributed at polynomial speed. We analyze the rate of decay which is determined by the number of steps and structure of general nilpotent Lie algebras. Our main result follows from the technique of controlling scaling operators in irreducible representations and measure estimation on close return orbits on general nilmanifolds. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2021.110 |