Loading…
Channel flow of non-Newtonian fluid due to peristalsis under external electric and magnetic field
The overall objective of the current analysis is to examine how electroosmotic flow combined with peristaltic pumping phenomenon could ably contribute to intracellular fluid flow. The biofluid is taken as non-Newtonian Couple stress fluid, while micro-passage is approximated as two-dimensional incli...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2022-12, Vol.236 (6), p.2670-2678 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The overall objective of the current analysis is to examine how electroosmotic flow combined with peristaltic pumping phenomenon could ably contribute to intracellular fluid flow. The biofluid is taken as non-Newtonian Couple stress fluid, while micro-passage is approximated as two-dimensional inclined channel comprehending complex peristaltic walls. Following a traditional approach of peristaltic fluid flow problem balance of mass and momentum is utilized. Beside channel waves, flow is also generated by Lorentz force triggered by electric and magnetic fields. To integrate electric potential term Poisson-Boltzmann and Nernst Planck equation are utilized. Finally, a sixth order BVP in term of stream function is obtained by employing creeping flow, long wavelength and Debye-Hückel assumptions. A numerical solution is calculated and analyzed by plotting fluid velocity and level curves in MATLAB 2021b. It is observed that couple stress fluid flows with greater speed (in central region of the channel) as compared to Newtonian fluid. Moreover, electro-osmotic parameter and Debye-Hückel length are assistive factors to the fluid velocity in the lower half of the passage. |
---|---|
ISSN: | 0954-4089 2041-3009 |
DOI: | 10.1177/09544089221097693 |