Loading…
A continuous approach to Floquet theory for pulse-sequence optimization in solid-state NMR
We present a framework that uses a continuous frequency space to describe and design solid-state nuclear magnetic resonance (NMR) experiments. The approach is similar to the well-established Floquet treatment for NMR, but it is not restricted to periodic Hamiltonians and allows the design of experim...
Saved in:
Published in: | The Journal of chemical physics 2022-11, Vol.157 (18), p.184103-184103 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-5acfb61e1a396c5846ef17949afb6dc5b9274fd38fd5f14a95c5a5832dc3defb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-5acfb61e1a396c5846ef17949afb6dc5b9274fd38fd5f14a95c5a5832dc3defb3 |
container_end_page | 184103 |
container_issue | 18 |
container_start_page | 184103 |
container_title | The Journal of chemical physics |
container_volume | 157 |
creator | Chávez, Matías Ernst, Matthias |
description | We present a framework that uses a continuous frequency space to describe and design solid-state nuclear magnetic resonance (NMR) experiments. The approach is similar to the well-established Floquet treatment for NMR, but it is not restricted to periodic Hamiltonians and allows the design of experiments in a reverse fashion. The framework is based on perturbation theory on a continuous Fourier space, which leads to effective, i.e., time-independent, Hamiltonians. It allows the back-calculation of the pulse scheme from the desired effective Hamiltonian as a function of spin-system parameters. We show as an example how to back-calculate the rf irradiation in the MIRROR experiment from the desired chemical-shift offset behavior of the sequence. |
doi_str_mv | 10.1063/5.0109229 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733669037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737118799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-5acfb61e1a396c5846ef17949afb6dc5b9274fd38fd5f14a95c5a5832dc3defb3</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCtbqwjcIuFFhNJlMksmyFKuCPyC6cRPSTEJTppMxyQj16U1tQXDp6sLlSzj3AHCK0RVGjFzTK4SRKEuxB0YY1aLgTKB9MEKoxIVgiB2CoxiXCCHMy2oE3idQ-y65bvBDhKrvg1d6AZOHs9Z_DCbBtDA-rKH1AfZDG00RTd532kDfJ7dyXyo530HXwehb1xQxqWTg0-PLMTiwKj842c0xeJvdvE7viofn2_vp5KHQRNBUUKXtnGGDFRFM07pixmIuKqHyutF0Lkpe2YbUtqEWV0pQTRWtSdlo0hg7J2Nwvv03Z8_JYpIrF7VpW9WZfJQsOeEY11yITM_-0KUfQpfTbRRhuSvCs7rYKh18jMFY2Qe3UmEtMZKbliWVu5azvdzaqF36aeJ_-NOHXyj7xpJv1tKLtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733669037</pqid></control><display><type>article</type><title>A continuous approach to Floquet theory for pulse-sequence optimization in solid-state NMR</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Chávez, Matías ; Ernst, Matthias</creator><creatorcontrib>Chávez, Matías ; Ernst, Matthias</creatorcontrib><description>We present a framework that uses a continuous frequency space to describe and design solid-state nuclear magnetic resonance (NMR) experiments. The approach is similar to the well-established Floquet treatment for NMR, but it is not restricted to periodic Hamiltonians and allows the design of experiments in a reverse fashion. The framework is based on perturbation theory on a continuous Fourier space, which leads to effective, i.e., time-independent, Hamiltonians. It allows the back-calculation of the pulse scheme from the desired effective Hamiltonian as a function of spin-system parameters. We show as an example how to back-calculate the rf irradiation in the MIRROR experiment from the desired chemical-shift offset behavior of the sequence.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0109229</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Mathematical analysis ; NMR ; Nuclear magnetic resonance ; Optimization ; Perturbation theory ; Physics ; Solid state</subject><ispartof>The Journal of chemical physics, 2022-11, Vol.157 (18), p.184103-184103</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-5acfb61e1a396c5846ef17949afb6dc5b9274fd38fd5f14a95c5a5832dc3defb3</citedby><cites>FETCH-LOGICAL-c395t-5acfb61e1a396c5846ef17949afb6dc5b9274fd38fd5f14a95c5a5832dc3defb3</cites><orcidid>0000-0002-9538-6086 ; 0000-0003-1395-9387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0109229$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Chávez, Matías</creatorcontrib><creatorcontrib>Ernst, Matthias</creatorcontrib><title>A continuous approach to Floquet theory for pulse-sequence optimization in solid-state NMR</title><title>The Journal of chemical physics</title><description>We present a framework that uses a continuous frequency space to describe and design solid-state nuclear magnetic resonance (NMR) experiments. The approach is similar to the well-established Floquet treatment for NMR, but it is not restricted to periodic Hamiltonians and allows the design of experiments in a reverse fashion. The framework is based on perturbation theory on a continuous Fourier space, which leads to effective, i.e., time-independent, Hamiltonians. It allows the back-calculation of the pulse scheme from the desired effective Hamiltonian as a function of spin-system parameters. We show as an example how to back-calculate the rf irradiation in the MIRROR experiment from the desired chemical-shift offset behavior of the sequence.</description><subject>Mathematical analysis</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Perturbation theory</subject><subject>Physics</subject><subject>Solid state</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNqd0M1KAzEUBeAgCtbqwjcIuFFhNJlMksmyFKuCPyC6cRPSTEJTppMxyQj16U1tQXDp6sLlSzj3AHCK0RVGjFzTK4SRKEuxB0YY1aLgTKB9MEKoxIVgiB2CoxiXCCHMy2oE3idQ-y65bvBDhKrvg1d6AZOHs9Z_DCbBtDA-rKH1AfZDG00RTd532kDfJ7dyXyo530HXwehb1xQxqWTg0-PLMTiwKj842c0xeJvdvE7viofn2_vp5KHQRNBUUKXtnGGDFRFM07pixmIuKqHyutF0Lkpe2YbUtqEWV0pQTRWtSdlo0hg7J2Nwvv03Z8_JYpIrF7VpW9WZfJQsOeEY11yITM_-0KUfQpfTbRRhuSvCs7rYKh18jMFY2Qe3UmEtMZKbliWVu5azvdzaqF36aeJ_-NOHXyj7xpJv1tKLtg</recordid><startdate>20221114</startdate><enddate>20221114</enddate><creator>Chávez, Matías</creator><creator>Ernst, Matthias</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9538-6086</orcidid><orcidid>https://orcid.org/0000-0003-1395-9387</orcidid></search><sort><creationdate>20221114</creationdate><title>A continuous approach to Floquet theory for pulse-sequence optimization in solid-state NMR</title><author>Chávez, Matías ; Ernst, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-5acfb61e1a396c5846ef17949afb6dc5b9274fd38fd5f14a95c5a5832dc3defb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematical analysis</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Perturbation theory</topic><topic>Physics</topic><topic>Solid state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chávez, Matías</creatorcontrib><creatorcontrib>Ernst, Matthias</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chávez, Matías</au><au>Ernst, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A continuous approach to Floquet theory for pulse-sequence optimization in solid-state NMR</atitle><jtitle>The Journal of chemical physics</jtitle><date>2022-11-14</date><risdate>2022</risdate><volume>157</volume><issue>18</issue><spage>184103</spage><epage>184103</epage><pages>184103-184103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We present a framework that uses a continuous frequency space to describe and design solid-state nuclear magnetic resonance (NMR) experiments. The approach is similar to the well-established Floquet treatment for NMR, but it is not restricted to periodic Hamiltonians and allows the design of experiments in a reverse fashion. The framework is based on perturbation theory on a continuous Fourier space, which leads to effective, i.e., time-independent, Hamiltonians. It allows the back-calculation of the pulse scheme from the desired effective Hamiltonian as a function of spin-system parameters. We show as an example how to back-calculate the rf irradiation in the MIRROR experiment from the desired chemical-shift offset behavior of the sequence.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0109229</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9538-6086</orcidid><orcidid>https://orcid.org/0000-0003-1395-9387</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2022-11, Vol.157 (18), p.184103-184103 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2733669037 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Mathematical analysis NMR Nuclear magnetic resonance Optimization Perturbation theory Physics Solid state |
title | A continuous approach to Floquet theory for pulse-sequence optimization in solid-state NMR |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20continuous%20approach%20to%20Floquet%20theory%20for%20pulse-sequence%20optimization%20in%20solid-state%20NMR&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ch%C3%A1vez,%20Mat%C3%ADas&rft.date=2022-11-14&rft.volume=157&rft.issue=18&rft.spage=184103&rft.epage=184103&rft.pages=184103-184103&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0109229&rft_dat=%3Cproquest_cross%3E2737118799%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-5acfb61e1a396c5846ef17949afb6dc5b9274fd38fd5f14a95c5a5832dc3defb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2733669037&rft_id=info:pmid/&rfr_iscdi=true |